Jump to content

Solar eclipse of October 12, 1977

From Wikipedia, the free encyclopedia
Solar eclipse of October 12, 1977
Map
Type of eclipse
NatureTotal
Gamma0.3836
Magnitude1.0269
Maximum eclipse
Duration157 s (2 min 37 s)
Coordinates14°06′N 123°36′W / 14.1°N 123.6°W / 14.1; -123.6
Max. width of band99 km (62 mi)
Times (UTC)
Greatest eclipse20:27:27
References
Saros143 (21 of 72)
Catalog # (SE5000)9459

A total solar eclipse occurred at the Moon's ascending node of orbit on Wednesday, October 12, 1977, with a magnitude of 1.0269. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Totality was visible in the Pacific Ocean, Colombia and Venezuela.

Observations[edit]

The National Geographic Society funded an expedition by sea led by Jay Pasachoff from Williams College, Massachusetts to the northeast Pacific Ocean to observe the total eclipse. The team took images of the sky and corona during the totality phase as well as corona spectrum and infrared images.[1]

Related eclipses[edit]

Eclipses in 1977[edit]

Metonic[edit]

Tzolkinex[edit]

Half-Saros[edit]

Tritos[edit]

Solar Saros 143[edit]

Inex[edit]

Triad[edit]

Solar eclipses of 1975–1978[edit]

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[2]

Solar eclipse series sets from 1975 to 1978
Descending node   Ascending node
Saros Map Gamma Saros Map Gamma
118 May 11, 1975

Partial
1.0647 123 November 3, 1975

Partial
−1.0248
128 April 29, 1976

Annular
0.3378 133 October 23, 1976

Total
−0.327
138 April 18, 1977

Annular
−0.399 143 October 12, 1977

Total
0.3836
148 April 7, 1978

Partial
−1.1081 153 October 2, 1978

Partial
1.1616

Saros 143[edit]

This eclipse is a part of Saros series 143, repeating every 18 years, 11 days, and containing 72 events. The series started with a partial solar eclipse on March 7, 1617. It contains total eclipses from June 24, 1797 through October 24, 1995; hybrid eclipses from November 3, 2013 through December 6, 2067; and annular eclipses from December 16, 2085 through September 16, 2536. The series ends at member 72 as a partial eclipse on April 23, 2897. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of totality was produced by member 16 at 3 minutes, 50 seconds on August 19, 1887, and the longest duration of annularity will be produced by member 51 at 4 minutes, 54 seconds on September 6, 2518. All eclipses in this series occur at the Moon’s ascending node of orbit.[3]

Series members 12–33 occur between 1801 and 2200:
12 13 14

July 6, 1815

July 17, 1833

July 28, 1851
15 16 17

August 7, 1869

August 19, 1887

August 30, 1905
18 19 20

September 10, 1923

September 21, 1941

October 2, 1959
21 22 23

October 12, 1977

October 24, 1995

November 3, 2013
24 25 26

November 14, 2031

November 25, 2049

December 6, 2067
27 28 29

December 16, 2085

December 29, 2103

January 8, 2122
30 31 32

January 20, 2140

January 30, 2158

February 10, 2176
33

February 21, 2194

Inex series[edit]

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Metonic series[edit]

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.

22 eclipse events between December 24, 1916 and July 31, 2000
December 24–25 October 12–13 July 31-Aug 1 May 18–20 March 7–8
91 93 95 97 99
December 23, 1878 October 12, 1882 July 31, 1886 May 18, 1890 March 7, 1894
101 103 105 107 109
December 23, 1897 October 12, 1901 August 1, 1905 May 19, 1909 March 8, 1913
111 113 115 117 119

December 24, 1916
October 12, 1920
July 31, 1924

May 19, 1928

March 7, 1932
121 123 125 127 129

December 25, 1935

October 12, 1939

August 1, 1943

May 20, 1947

March 7, 1951
131 133 135 137 139

December 25, 1954

October 12, 1958

July 31, 1962

May 20, 1966

March 7, 1970
141 143 145 147 149

December 24, 1973

October 12, 1977

July 31, 1981

May 19, 1985

March 7, 1989
151 153 155 157 159

December 24, 1992

October 12, 1996

July 31, 2000
May 19, 2004 March 7, 2008
161 163 165 167 169
December 24, 2011 October 13, 2015 August 1, 2019 May 19, 2023 March 8, 2027

Notes[edit]

  1. ^ "1977, Pacific Ocean". Williams College. Archived from the original on 31 August 2019.
  2. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  3. ^ "NASA - Catalog of Solar Eclipses of Saros 143". eclipse.gsfc.nasa.gov.

References[edit]