Jump to content

Solar eclipse of August 31, 1989

From Wikipedia, the free encyclopedia
Solar eclipse of August 31, 1989
Map
Type of eclipse
NaturePartial
Gamma−1.1928
Magnitude0.6344
Maximum eclipse
Coordinates61°18′S 23°36′E / 61.3°S 23.6°E / -61.3; 23.6
Times (UTC)
Greatest eclipse5:31:47
References
Saros154 (5 of 71)
Catalog # (SE5000)9485

A partial solar eclipse occurred at the Moon's descending node of orbit on Thursday, August 31, 1989, with a magnitude of 0.6344. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

Related eclipses[edit]

Eclipses in 1989[edit]

Metonic[edit]

Tzolkinex[edit]

Half-Saros[edit]

Tritos[edit]

Solar Saros 154[edit]

Inex[edit]

Triad[edit]

Solar eclipses of 1986–1989[edit]

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[1]

Solar eclipse series sets from 1986 to 1989
Ascending node   Descending node
Saros Map Gamma Saros Map Gamma
119 April 9, 1986

Partial
−1.0822 124 October 3, 1986

Hybrid
0.9931
129 March 29, 1987

Hybrid
−0.3053 134 September 23, 1987

Annular
0.2787
139 March 18, 1988

Total
0.4188 144 September 11, 1988

Annular
−0.4681
149 March 7, 1989

Partial
1.0981 154 August 31, 1989

Partial
−1.1928

Saros 154[edit]

This eclipse is a part of Saros series 154, repeating every 18 years, 11 days, and containing 71 events. The series started with a partial solar eclipse on July 19, 1917. It contains annular eclipses from October 3, 2043 through March 27, 2332; hybrid eclipses from April 7, 2350 through April 29, 2386; and total eclipses from May 9, 2404 through May 29, 3035. The series ends at member 71 as a partial eclipse on August 25, 3179. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of annularity will be produced by member 9 at 3 minutes, 41 seconds on October 13, 2061, and the longest duration of totality will be produced by member 35 at 4 minutes, 50 seconds on July 25, 2530. All eclipses in this series occur at the Moon’s descending node of orbit.[2]

Series members 1–16 occur between 1917 and 2200:
1 2 3

July 19, 1917

July 30, 1935

August 9, 1953
4 5 6

August 20, 1971

August 31, 1989

September 11, 2007
7 8 9

September 21, 2025

October 3, 2043

October 13, 2061
10 11 12

October 24, 2079

November 4, 2097

November 16, 2115
13 14 15

November 26, 2133

December 8, 2151

December 18, 2169
16

December 29, 2187

Metonic series[edit]

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days).

References[edit]

  1. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  2. ^ "NASA - Catalog of Solar Eclipses of Saros 154". eclipse.gsfc.nasa.gov.

External links[edit]