Jump to content

Solar eclipse of August 24, 2063

From Wikipedia, the free encyclopedia
Solar eclipse of August 24, 2063
Map
Type of eclipse
NatureTotal
Gamma0.2771
Magnitude1.075
Maximum eclipse
Duration349 s (5 min 49 s)
Coordinates25°36′N 168°24′E / 25.6°N 168.4°E / 25.6; 168.4
Max. width of band252 km (157 mi)
Times (UTC)
Greatest eclipse1:22:11
References
Saros136 (40 of 71)
Catalog # (SE5000)9649

A total solar eclipse will occur at the Moon's descending node of orbit on Friday, August 24, 2063, with a magnitude of 1.075. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

Related eclipses[edit]

Eclipses in 2063[edit]

Metonic[edit]

Tzolkinex[edit]

Half-Saros[edit]

Tritos[edit]

Solar Saros 136[edit]

Inex[edit]

Triad[edit]

Solar eclipses of 2062–2065[edit]

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[1]

The partial solar eclipses on July 3, 2065 and December 27, 2065 occur in the next lunar year eclipse set.

Solar eclipse series sets from 2062 to 2065
Ascending node   Descending node
Saros Map Gamma Saros Map Gamma
121 March 11, 2062

Partial
−1.0238 126 September 3, 2062

Partial
1.0191
131 February 28, 2063

Annular
−0.336 136 August 24, 2063

Total
0.2771
141 February 17, 2064

Annular
0.3597 146 August 12, 2064

Total
−0.4652
151 February 5, 2065

Partial
1.0336 156 August 2, 2065

Partial
−1.2759

Saros 136[edit]

This eclipse is a part of Saros series 136, repeating every 18 years, 11 days, and containing 71 events. The series started with a partial solar eclipse on June 14, 1360. It contains annular eclipses from September 8, 1504 through November 12, 1594; hybrid eclipses from November 22, 1612 through January 17, 1703; and total eclipses from January 27, 1721 through May 13, 2496. The series ends at member 71 as a partial eclipse on July 30, 2622. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of annularity was produced by member 9 at 32 seconds on September 8, 1504, and the longest duration of totality was produced by member 34 at 7 minutes, 7.74 seconds on June 20, 1955. All eclipses in this series occur at the Moon’s descending node of orbit.[2]

Series members 26–47 occur between 1801 and 2200:
26 27 28

March 24, 1811

April 3, 1829

April 15, 1847
29 30 31

April 25, 1865

May 6, 1883

May 18, 1901
32 33 34

May 29, 1919

June 8, 1937

June 20, 1955
35 36 37

June 30, 1973

July 11, 1991

July 22, 2009
38 39 40

August 2, 2027

August 12, 2045

August 24, 2063
41 42 43

September 3, 2081

September 14, 2099

September 26, 2117
44 45 46

October 7, 2135

October 17, 2153

October 29, 2171
47

November 8, 2189

Metonic series[edit]

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days).

References[edit]

  1. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  2. ^ "NASA - Catalog of Solar Eclipses of Saros 136". eclipse.gsfc.nasa.gov.

External links[edit]