Jump to content

Solar eclipse of December 2, 1956

From Wikipedia, the free encyclopedia
Solar eclipse of December 2, 1956
Map
Type of eclipse
NaturePartial
Gamma1.0923
Magnitude0.8047
Maximum eclipse
Coordinates67°54′N 64°36′E / 67.9°N 64.6°E / 67.9; 64.6
Times (UTC)
Greatest eclipse8:00:35
References
Saros151 (11 of 72)
Catalog # (SE5000)9413

A partial solar eclipse occurred at the Moon's ascending node of orbit on Sunday, December 2, 1956, with a magnitude of 0.8047. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

Related eclipses[edit]

Eclipses in 1956[edit]

Metonic[edit]

Tzolkinex[edit]

Half-Saros[edit]

Tritos[edit]

Solar Saros 151[edit]

Inex[edit]

Triad[edit]

Solar eclipses of 1953–1956[edit]

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[1]

The partial solar eclipses on February 14, 1953 and August 9, 1953 occur in the previous lunar year eclipse set.

Solar eclipse series sets from 1953 to 1956
Descending node   Ascending node
Saros Map Gamma Saros Map Gamma
116 July 11, 1953

Partial
1.4388 121 January 5, 1954

Annular
−0.9296
126 June 30, 1954

Total
0.6135 131 December 25, 1954

Annular
−0.2576
136 June 20, 1955

Total
−0.1528 141 December 14, 1955

Annular
0.4266
146 June 8, 1956

Total
−0.8934 151 December 2, 1956

Partial
1.0923

Saros 151[edit]

This eclipse is a part of Saros series 151, repeating every 18 years, 11 days, and containing 72 events. The series started with a partial solar eclipse on August 14, 1776. It contains annular eclipses from February 28, 2101 through April 23, 2191; a hybrid eclipse on May 5, 2209; and total eclipses from May 16, 2227 through July 6, 2912. The series ends at member 72 as a partial eclipse on October 1, 3056. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of annularity will be produced by member 19 at 2 minutes, 44 seconds on February 28, 2101, and the longest duration of totality will be produced by member 60 at 5 minutes, 41 seconds on May 22, 2840. All eclipses in this series occur at the Moon’s ascending node of orbit.[2]

Series members 3–24 occur between 1801 and 2200:
3 4 5

September 5, 1812

September 17, 1830

September 27, 1848
6 7 8

October 8, 1866

October 19, 1884

October 31, 1902
9 10 11

November 10, 1920

November 21, 1938

December 2, 1956
12 13 14

December 13, 1974

December 24, 1992

January 4, 2011
15 16 17

January 14, 2029

January 26, 2047

February 5, 2065
18 19 20

February 16, 2083

February 28, 2101

March 11, 2119
21 22 23

March 21, 2137

April 2, 2155

April 12, 2173
24

April 23, 2191

References[edit]

  1. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  2. ^ "NASA - Catalog of Solar Eclipses of Saros 151". eclipse.gsfc.nasa.gov.