Jump to content

Solar eclipse of December 6, 2067

From Wikipedia, the free encyclopedia
Solar eclipse of December 6, 2067
Map
Type of eclipse
NatureHybrid
Gamma0.2845
Magnitude1.0011
Maximum eclipse
Duration8 s (0 min 8 s)
Coordinates6°00′S 32°24′W / 6°S 32.4°W / -6; -32.4
Max. width of band4 km (2.5 mi)
Times (UTC)
Greatest eclipse14:03:43
References
Saros143 (26 of 72)
Catalog # (SE5000)9659

A total solar eclipse will occur at the Moon's ascending node of orbit on Tuesday, December 6, 2067, with a magnitude of 1.0011. It is a hybrid event, beginning and ending as an annular eclipse. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

Related eclipses[edit]

Eclipses in 2067[edit]

Metonic[edit]

Tzolkinex[edit]

Half-Saros[edit]

Tritos[edit]

Solar Saros 143[edit]

Inex[edit]

Triad[edit]

Solar eclipses of 2065–2069[edit]

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[1]

The partial solar eclipses on February 5, 2065 and August 2, 2065 occur in the previous lunar year eclipse set, and the partial solar eclipses on April 21, 2069 and October 15, 2069 occur in the next lunar year eclipse set.

Solar eclipse series sets from 2065 to 2069
Descending node   Ascending node
Saros Map Gamma Saros Map Gamma
118 July 3, 2065

Partial
1.4619 123 December 27, 2065

Partial
−1.0688
128 June 22, 2066

Annular
0.733 133 December 17, 2066

Total
−0.4043
138 June 11, 2067

Annular
−0.0387 143 December 6, 2067

Hybrid
0.2845
148 May 31, 2068

Total
−0.797 153 November 24, 2068

Partial
1.0299
158 May 20, 2069

Partial
−1.4852

Saros 143[edit]

This eclipse is a part of Saros series 143, repeating every 18 years, 11 days, and containing 72 events. The series started with a partial solar eclipse on March 7, 1617. It contains total eclipses from June 24, 1797 through October 24, 1995; hybrid eclipses from November 3, 2013 through December 6, 2067; and annular eclipses from December 16, 2085 through September 16, 2536. The series ends at member 72 as a partial eclipse on April 23, 2897. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of totality was produced by member 16 at 3 minutes, 50 seconds on August 19, 1887, and the longest duration of annularity will be produced by member 51 at 4 minutes, 54 seconds on September 6, 2518. All eclipses in this series occur at the Moon’s ascending node of orbit.[2]

Series members 12–33 occur between 1801 and 2200:
12 13 14

July 6, 1815

July 17, 1833

July 28, 1851
15 16 17

August 7, 1869

August 19, 1887

August 30, 1905
18 19 20

September 10, 1923

September 21, 1941

October 2, 1959
21 22 23

October 12, 1977

October 24, 1995

November 3, 2013
24 25 26

November 14, 2031

November 25, 2049

December 6, 2067
27 28 29

December 16, 2085

December 29, 2103

January 8, 2122
30 31 32

January 20, 2140

January 30, 2158

February 10, 2176
33

February 21, 2194

Tritos series[edit]

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2100

December 21, 1805
(Saros 119)

November 19, 1816
(Saros 120)

October 20, 1827
(Saros 121)

September 18, 1838
(Saros 122)

August 18, 1849
(Saros 123)

July 18, 1860
(Saros 124)

June 18, 1871
(Saros 125)

May 17, 1882
(Saros 126)

April 16, 1893
(Saros 127)

March 17, 1904
(Saros 128)

February 14, 1915
(Saros 129)

January 14, 1926
(Saros 130)

December 13, 1936
(Saros 131)

November 12, 1947
(Saros 132)

October 12, 1958
(Saros 133)

September 11, 1969
(Saros 134)

August 10, 1980
(Saros 135)

July 11, 1991
(Saros 136)

June 10, 2002
(Saros 137)

May 10, 2013
(Saros 138)

April 8, 2024
(Saros 139)

March 9, 2035
(Saros 140)

February 5, 2046
(Saros 141)

January 5, 2057
(Saros 142)

December 6, 2067
(Saros 143)

November 4, 2078
(Saros 144)

October 4, 2089
(Saros 145)

September 4, 2100
(Saros 146)

In the 22nd century:

  • Solar saros 147: annular solar eclipse of August 4, 2111
  • Solar saros 148: total solar eclipse of July 4, 2122
  • Solar saros 149: total solar eclipse of June 3, 2133
  • Solar saros 150: annular solar eclipse of May 3, 2144
  • Solar saros 151: annular solar eclipse of April 2, 2155
  • Solar saros 152: total solar eclipse of March 2, 2166
  • Solar saros 153: annular solar eclipse of January 29, 2177
  • Solar saros 154: annular solar eclipse of December 29, 2187
  • Solar saros 155: total solar eclipse of November 28, 2198

In the 23rd century:

  • Solar saros 156: annular solar eclipse of October 29, 2209
  • Solar saros 157: annular solar eclipse of September 27, 2220
  • Solar saros 158: total solar eclipse of August 28, 2231
  • Solar saros 159: partial solar eclipse of July 28, 2242
  • Solar saros 160: partial solar eclipse of June 26, 2253
  • Solar saros 161: partial solar eclipse of May 26, 2264
  • Solar saros 162: partial solar eclipse of April 26, 2275
  • Solar saros 163: partial solar eclipse of March 25, 2286
  • Solar saros 164: partial solar eclipse of February 22, 2297

Metonic series[edit]

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.

Notes[edit]

  1. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  2. ^ "NASA - Catalog of Solar Eclipses of Saros 143". eclipse.gsfc.nasa.gov.

References[edit]