Jump to content

Solar eclipse of March 19, 2072

From Wikipedia, the free encyclopedia
Solar eclipse of March 19, 2072
Map
Type of eclipse
NaturePartial
Gamma−1.1405
Magnitude0.7199
Maximum eclipse
Coordinates72°12′S 30°24′W / 72.2°S 30.4°W / -72.2; -30.4
Times (UTC)
Greatest eclipse20:10:31
References
Saros150 (20 of 71)
Catalog # (SE5000)9669

A partial solar eclipse will occur at the Moon's descending node of orbit on Saturday, March 19, 2072, with a magnitude of 0.7199. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

Related eclipses[edit]

Eclipses in 2072[edit]

Metonic[edit]

Tzolkinex[edit]

Half-Saros[edit]

Tritos[edit]

Solar Saros 150[edit]

Inex[edit]

Triad[edit]

Solar eclipses of 2069–2072[edit]

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[1]

The partial solar eclipse on May 20, 2069 occurs in the previous lunar year eclipse set.

Solar eclipse series sets from 2069 to 2072
Descending node   Ascending node
Saros Map Gamma Saros Map Gamma
120 April 21, 2069

Partial
1.0624 125 October 15, 2069

Partial
−1.2524
130 April 11, 2070

Total
0.3652 135 October 4, 2070

Annular
−0.495
140 March 31, 2071

Annular
−0.3739 145 September 23, 2071

Total
0.262
150 March 19, 2072

Partial
−1.1405 155 September 12, 2072

Total
0.9655

Saros 150[edit]

This eclipse is a part of Saros series 150, repeating every 18 years, 11 days, and containing 71 events. The series started with a partial solar eclipse on August 24, 1729. It contains annular eclipses from April 22, 2126 through June 22, 2829. There are no hybrid or total eclipses in this set. The series ends at member 71 as a partial eclipse on September 29, 2991. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of annularity will be produced by member 45 at 9 minutes, 58 seconds on December 19, 2522. All eclipses in this series occur at the Moon’s descending node of orbit.[2]

Series members 5–27 occur between 1801 and 2200:
5 6 7

October 7, 1801

October 19, 1819

October 29, 1837
8 9 10

November 9, 1855

November 20, 1873

December 1, 1891
11 12 13

December 12, 1909

December 24, 1927

January 3, 1946
14 15 16

January 14, 1964

January 25, 1982

February 5, 2000
17 18 19

February 15, 2018

February 27, 2036

March 9, 2054
20 21 22

March 19, 2072

March 31, 2090

April 11, 2108
23 24 25

April 22, 2126

May 3, 2144

May 14, 2162
26 27

May 24, 2180

June 4, 2198

Metonic series[edit]

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.

21 eclipse events between June 1, 2011 and June 1, 2087
May 31 – June 1 March 19–20 January 5–6 October 24–25 August 12–13
118 120 122 124 126

June 1, 2011

March 20, 2015

January 6, 2019

October 25, 2022

August 12, 2026
128 130 132 134 136

June 1, 2030

March 20, 2034

January 5, 2038

October 25, 2041

August 12, 2045
138 140 142 144 146

May 31, 2049

March 20, 2053

January 5, 2057

October 24, 2060

August 12, 2064
148 150 152 154 156

May 31, 2068

March 19, 2072

January 6, 2076

October 24, 2079

August 13, 2083
158 160 162 164 166

June 1, 2087

October 24, 2098

References[edit]

  1. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  2. ^ "NASA - Catalog of Solar Eclipses of Saros 150". eclipse.gsfc.nasa.gov.

External links[edit]