Jump to content

Solar eclipse of November 11, 1901

From Wikipedia, the free encyclopedia
Solar eclipse of November 11, 1901
Map
Type of eclipse
NatureAnnular
Gamma0.4758
Magnitude0.9216
Maximum eclipse
Duration661 s (11 min 1 s)
Coordinates10°48′N 68°54′E / 10.8°N 68.9°E / 10.8; 68.9
Max. width of band336 km (209 mi)
Times (UTC)
Greatest eclipse7:28:21
References
Saros141 (17 of 70)
Catalog # (SE5000)9284

An annular solar eclipse occurred at the Moon's ascending node of orbit on Monday, November 11, 1901,[1][2] with a magnitude of 0.9216. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible from the Italian island Sicily, the whole British Malta (now Malta), Ottoman Tripolitania (now Libya), Egypt, Ottoman Empire (parts now belonging to Cretan State in Greece, Israel, Jordan and Saudi Arabia), Emirate of Jabal Shammar (now belonging to Saudi Arabia), Aden Protectorate (now belonging to Yemen), Muscat and Oman (now Oman), British Raj (the parts now belonging to India, Andaman and Nicobar Islands and Myanmar), British Ceylon (now Sri Lanka), Siam (name changed to Thailand later), French Indochina (the parts now belonging to Cambodia, southern tip of Laos and southern Vietnam, including Phnom Penh), Bombay Reef in the Paracel Islands, and Philippines.

Related eclipses[edit]

Eclipses in 1901[edit]

Metonic[edit]

Tzolkinex[edit]

Half-Saros[edit]

Tritos[edit]

Solar Saros 141[edit]

Inex[edit]

Triad[edit]

Solar eclipses of 1898–1902[edit]

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[3]

The partial solar eclipse on April 8, 1902 occurs in the next lunar year eclipse set.

Solar eclipse series sets from 1898 to 1902
Ascending node   Descending node
Saros Map Gamma Saros Map Gamma
111 December 13, 1898

Partial
−1.5252 116 June 8, 1899

Partial
1.2089
121 December 3, 1899

Annular
−0.9061 126 May 28, 1900

Total
0.3943
131 November 22, 1900

Annular
−0.2245 136 May 18, 1901

Total
−0.3626
141 November 11, 1901

Annular
0.4758 146 May 7, 1902

Partial
−1.0831
151 October 31, 1902

Partial
1.1556

Saros 141[edit]

This eclipse is a part of Saros series 141, repeating every 18 years, 11 days, and containing 70 events. The series started with a partial solar eclipse on May 19, 1613. It contains annular eclipses from August 4, 1739 through October 14, 2640. There are no hybrid or total eclipses in this set. The series ends at member 70 as a partial eclipse on June 13, 2857. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of annularity was produced by member 20 at 12 minutes, 9 seconds on December 14, 1955. All eclipses in this series occur at the Moon’s ascending node of orbit.[4]

Series members 12–33 occur between 1801 and 2200:
12 13 14

September 17, 1811

September 28, 1829

October 9, 1847
15 16 17

October 19, 1865

October 30, 1883

November 11, 1901
18 19 20

November 22, 1919

December 2, 1937

December 14, 1955
21 22 23

December 24, 1973

January 4, 1992

January 15, 2010
24 25 26

January 26, 2028

February 5, 2046

February 17, 2064
27 28 29

February 27, 2082

March 10, 2100

March 22, 2118
30 31 32

April 1, 2136

April 12, 2154

April 23, 2172
33

May 4, 2190

Inex series[edit]

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Notes[edit]

  1. ^ "Chinese rescue sun in eclipse". The Atlanta Journal. Atlanta, Georgia. 1901-11-11. p. 1. Retrieved 2023-10-27 – via Newspapers.com.
  2. ^ "Orb of day "rescued"". The Baltimore Sun. Baltimore, Maryland. 1901-11-12. p. 2. Retrieved 2023-10-27 – via Newspapers.com.
  3. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  4. ^ "NASA - Catalog of Solar Eclipses of Saros 141". eclipse.gsfc.nasa.gov.

References[edit]