Jump to content

Solar eclipse of March 10, 2100

From Wikipedia, the free encyclopedia
Solar eclipse of March 10, 2100
Map
Type of eclipse
NatureAnnular
Gamma0.3077
Magnitude0.9338
Maximum eclipse
Duration449 s (7 min 29 s)
Coordinates12°00′N 162°24′W / 12°N 162.4°W / 12; -162.4
Max. width of band257 km (160 mi)
Times (UTC)
Greatest eclipse22:28:11
References
Saros141 (28 of 70)
Catalog # (SE5000)9733

An annular solar eclipse will occur at the Moon's ascending node of orbit between Wednesday, March 10 and Thursday, March 11, 2100, with a magnitude of 0.9338. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometers wide. The path of annularity will move from Indonesia at sunrise, over the islands of Hawaii and Maui around noon, and through the northwestern United States at sunset.

The eclipse will be visible over Indonesia and Pacific Ocean west of the International Date Line, on the morning of Thursday, March 11, 2100, and the Pacific Ocean east of International Date Line and North America on the afternoon of Wednesday, March 10, 2100. The path of annularity will be visible in those locations.

Related eclipses[edit]

Eclipses in 2100[edit]

Metonic[edit]

Tzolkinex[edit]

Half-Saros[edit]

Tritos[edit]

Solar Saros 141[edit]

Inex[edit]

Triad[edit]

Solar eclipses of 2098–2101[edit]

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[1]

The partial solar eclipse on October 24, 2098 occurs in the previous lunar year eclipse set.

Solar eclipse series sets from 2098 to 2101
Ascending node   Descending node
Saros Map Gamma Saros Map Gamma
121 April 1, 2098

Partial
−1.1005 126 September 25, 2098

Partial
1.14
131 March 21, 2099

Annular
−0.4016 136 September 14, 2099

Total
0.3942
141 March 10, 2100

Annular
0.3077 146 September 4, 2100

Total
−0.3384
151 February 28, 2101

Annular
0.9964 156 August 24, 2101

Partial
−1.1392

Saros 141[edit]

This eclipse is a part of Saros series 141, repeating every 18 years, 11 days, and containing 70 events. The series started with a partial solar eclipse on May 19, 1613. It contains annular eclipses from August 4, 1739 through October 14, 2640. There are no hybrid or total eclipses in this set. The series ends at member 70 as a partial eclipse on June 13, 2857. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of annularity was produced by member 20 at 12 minutes, 9 seconds on December 14, 1955. All eclipses in this series occur at the Moon’s ascending node of orbit.[2]

Series members 12–33 occur between 1801 and 2200:
12 13 14

September 17, 1811

September 28, 1829

October 9, 1847
15 16 17

October 19, 1865

October 30, 1883

November 11, 1901
18 19 20

November 22, 1919

December 2, 1937

December 14, 1955
21 22 23

December 24, 1973

January 4, 1992

January 15, 2010
24 25 26

January 26, 2028

February 5, 2046

February 17, 2064
27 28 29

February 27, 2082

March 10, 2100

March 22, 2118
30 31 32

April 1, 2136

April 12, 2154

April 23, 2172
33

May 4, 2190

Inex series[edit]

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

References[edit]

  1. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  2. ^ "NASA - Catalog of Solar Eclipses of Saros 141". eclipse.gsfc.nasa.gov.

External links[edit]