Jump to content

Solar eclipse of April 29, 1976

From Wikipedia, the free encyclopedia
Solar eclipse of April 29, 1976
Map
Type of eclipse
NatureAnnular
Gamma0.3378
Magnitude0.9421
Maximum eclipse
Duration401 s (6 min 41 s)
Coordinates34°00′N 18°18′E / 34°N 18.3°E / 34; 18.3
Max. width of band227 km (141 mi)
Times (UTC)
Greatest eclipse10:24:18
References
Saros128 (56 of 73)
Catalog # (SE5000)9456

An annular solar eclipse occurred at the Moon's descending node of orbit on Thursday, April 29, 1976, with a magnitude of 0.9421. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible from North Africa, Greece, Turkey, Middle East, central Asia, India, China. 5 of the 14 eight-thousanders in Pakistan and China—Nanga Parbat, K2, Broad Peak, Gasherbrum II and Gasherbrum I, lie in the path of annularity.

Observation[edit]

The Institute of Physics and Institute of Mathematics of the Chinese Academy of Sciences and the Xinjiang Earthquake Team conducted observations of gravitational effects using gravimeters, inclinometers, pendulum clocks and seismometers in southwestern Hotan County, Hotan Prefecture, Xinjiang near the Karakoram Pass at an altitude of 5,500 metres (18,000 ft). Results showed that the gravitational acceleration had no obvious effect within the accuracy of the instruments. No inclination was recorded on the photosensitive paper of the inclinometer due to the width of its lines. Three inclinations were pen-recorded, whose time and direction were clearly related to that of the eclipse. Due to the difficult conditions with the high altitude, the observation team was unable to obtain more comparative data.[1]

Related eclipses[edit]

Eclipses in 1976[edit]

Metonic[edit]

Tzolkinex[edit]

Half-Saros[edit]

Tritos[edit]

Solar Saros 128[edit]

Inex[edit]

Triad[edit]

Solar eclipses of 1975–1978[edit]

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[2]

Solar eclipse series sets from 1975 to 1978
Descending node   Ascending node
Saros Map Gamma Saros Map Gamma
118 May 11, 1975

Partial
1.0647 123 November 3, 1975

Partial
−1.0248
128 April 29, 1976

Annular
0.3378 133 October 23, 1976

Total
−0.327
138 April 18, 1977

Annular
−0.399 143 October 12, 1977

Total
0.3836
148 April 7, 1978

Partial
−1.1081 153 October 2, 1978

Partial
1.1616

Saros 128[edit]

This eclipse is a part of Saros series 128, repeating every 18 years, 11 days, and containing 73 events. The series started with a partial solar eclipse on August 29, 984 AD. It contains total eclipses from May 16, 1417 through June 18, 1471; hybrid eclipses from June 28, 1489 through July 31, 1543; and annular eclipses from August 11, 1561 through July 25, 2120. The series ends at member 73 as a partial eclipse on November 1, 2282. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of totality was produced by member 27 at 1 minutes, 45 seconds on June 7, 1453, and the longest duration of annularity was produced by member 48 at 8 minutes, 35 seconds on February 1, 1832. All eclipses in this series occur at the Moon’s descending node of orbit.[3]

Series members 47–68 occur between 1801 and 2200:
47 48 49

January 21, 1814

February 1, 1832

February 12, 1850
50 51 52

February 23, 1868

March 5, 1886

March 17, 1904
53 54 55

March 28, 1922

April 7, 1940

April 19, 1958
56 57 58

April 29, 1976

May 10, 1994

May 20, 2012
59 60 61

June 1, 2030

June 11, 2048

June 22, 2066
62 63 64

July 3, 2084

July 15, 2102

July 25, 2120
65 66 67

August 5, 2138

August 16, 2156

August 27, 2174
68

September 6, 2192

Metonic series[edit]

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.

21 eclipse events, progressing from north to south between July 11, 1953 and July 11, 2029
July 10–12 April 29–30 February 15–16 December 4–5 September 21–23
116 118 120 122 124

July 11, 1953

April 30, 1957

February 15, 1961

December 4, 1964

September 22, 1968
126 128 130 132 134

July 10, 1972

April 29, 1976

February 16, 1980

December 4, 1983

September 23, 1987
136 138 140 142 144

July 11, 1991

April 29, 1995

February 16, 1999

December 4, 2002

September 22, 2006
146 148 150 152 154

July 11, 2010

April 29, 2014

February 15, 2018

December 4, 2021

September 21, 2025
156 158 160 162 164

July 11, 2029

Notes[edit]

  1. ^ 王榴泉 田景发 刘煜奋 汤小琳 赵之淑 秦荣先 谭大均 刘易成 张建朝 (1978). "1976年4月29日日环食时引力效应观测——重力仪与倾斜仪的观测结果". 科学通报 (8): 477–480.
  2. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  3. ^ "NASA - Catalog of Solar Eclipses of Saros 128". eclipse.gsfc.nasa.gov.

References[edit]