Jump to content

Solar eclipse of May 11, 2040

From Wikipedia, the free encyclopedia
Solar eclipse of May 11, 2040
Map
Type of eclipse
NaturePartial
Gamma−1.2529
Magnitude0.5306
Maximum eclipse
Coordinates62°48′S 174°24′E / 62.8°S 174.4°E / -62.8; 174.4
Times (UTC)
Greatest eclipse3:43:02
References
Saros119 (67 of 71)
Catalog # (SE5000)9597

A partial solar eclipse will occur at the Moon's ascending node of orbit on Friday, May 11, 2040, with a magnitude of 0.5306. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

Images[edit]


Animated path

Related eclipses[edit]

Eclipses in 2040[edit]

Metonic[edit]

Tzolkinex[edit]

Half-Saros[edit]

Tritos[edit]

Solar Saros 119[edit]

Inex[edit]

Triad[edit]

Solar eclipses of 2040–2043[edit]

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[1]

Solar eclipse series sets from 2040 to 2043
Ascending node   Descending node
Saros Map Gamma Saros Map Gamma
119 May 11, 2040

Partial
−1.2529 124 November 4, 2040

Partial
1.0993
129 April 30, 2041

Total
−0.4492 134 October 25, 2041

Annular
0.4133
139 April 20, 2042

Total
0.2956 144 October 14, 2042

Annular
−0.303
149 April 9, 2043

Total (non-central)
1.0031 154 October 3, 2043

Annular (non-central)
1.0102

Saros 119[edit]

This eclipse is a part of Saros series 119, repeating every 18 years, 11 days, and containing 71 events. The series started with a partial solar eclipse on May 15, 850 AD. It contains total eclipses on August 9, 994 AD and August 20, 1012; a hybrid eclipse on August 31, 1030; and annular eclipses from September 10, 1048 through March 18, 1950. The series ends at member 71 as a partial eclipse on June 24, 2112. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of totality was produced by member 10 at 32 seconds on August 20, 1012, and the longest duration of annularity was produced by member 44 at 7 minutes, 37 seconds on September 1, 1625. All eclipses in this series occur at the Moon’s ascending node of orbit.[2]

References[edit]

  1. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  2. ^ "NASA - Catalog of Solar Eclipses of Saros 119". eclipse.gsfc.nasa.gov.

External links[edit]