Jump to content

Solar eclipse of May 20, 2069

From Wikipedia, the free encyclopedia
Solar eclipse of May 20, 2069
Map
Type of eclipse
NaturePartial
Gamma−1.4852
Magnitude0.0879
Maximum eclipse
Coordinates68°48′S 69°54′W / 68.8°S 69.9°W / -68.8; -69.9
Times (UTC)
Greatest eclipse17:53:18
References
Saros158 (1 of 70)
Catalog # (SE5000)9662

A partial solar eclipse will occur at the Moon's descending node of orbit on Monday, May 20, 2069, with a magnitude of 0.0879. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

This event will mark the beginning of Solar Saros 158.

Related eclipses[edit]

Eclipses in 2069[edit]

Metonic[edit]

Tzolkinex[edit]

Half-Saros[edit]

Tritos[edit]

Solar Saros 158[edit]

Triad[edit]

Solar eclipses of 2065–2069[edit]

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[1]

The partial solar eclipses on February 5, 2065 and August 2, 2065 occur in the previous lunar year eclipse set, and the partial solar eclipses on April 21, 2069 and October 15, 2069 occur in the next lunar year eclipse set.

Solar eclipse series sets from 2065 to 2069
Descending node   Ascending node
Saros Map Gamma Saros Map Gamma
118 July 3, 2065

Partial
1.4619 123 December 27, 2065

Partial
−1.0688
128 June 22, 2066

Annular
0.733 133 December 17, 2066

Total
−0.4043
138 June 11, 2067

Annular
−0.0387 143 December 6, 2067

Hybrid
0.2845
148 May 31, 2068

Total
−0.797 153 November 24, 2068

Partial
1.0299
158 May 20, 2069

Partial
−1.4852

Saros 158[edit]

This eclipse is a part of Saros series 158, repeating every 18 years, 11 days, and containing 70 events. The series will start with a partial solar eclipse on May 20, 2069. It contains total eclipses from August 5, 2195 through August 13, 2808; hybrid eclipses on August 24, 2826 and September 3, 2844; and annular eclipses from September 15, 2862 through February 27, 3133. The series ends at member 70 as a partial eclipse on June 16, 3313. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of totality will be produced by member 10 at 4 minutes, 43 seconds on August 28, 2231, and the longest duration of annularity will be produced by member 57 at 6 minutes, 7 seconds on January 25, 3079. All eclipses in this series occur at the Moon’s descending node of orbit.[2]

Series members 1–8 occur between 2069 and 2200:
1 2 3

May 20, 2069

June 1, 2087

June 12, 2105
4 5 6

June 23, 2123

July 3, 2141

July 15, 2159
7 8

July 25, 2177

August 5, 2195

Metonic series[edit]

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.[3]

Octon series with 21 events between May 21, 1993 and August 2, 2065
May 20–21 March 8–9 December 25–26 October 13–14 August 1–2
98 100 102 104 106
May 21, 1955 March 9, 1959 December 26, 1962 October 14, 1966 August 2, 1970
108 110 112 114 116
May 21, 1974 March 9, 1978 December 26, 1981 October 14, 1985 August 1, 1989
118 120 122 124 126

May 21, 1993

March 9, 1997

December 25, 2000

October 14, 2004

August 1, 2008
128 130 132 134 136

May 20, 2012

March 9, 2016

December 26, 2019

October 14, 2023

August 2, 2027
138 140 142 144 146

May 21, 2031

March 9, 2035

December 26, 2038

October 14, 2042

August 2, 2046
148 150 152 154 156

May 20, 2050

March 9, 2054

December 26, 2057

October 13, 2061

August 2, 2065
158 160 162 164 166

May 20, 2069
March 8, 2073 December 26, 2076 October 13, 2080 August 1, 2084

References[edit]

  1. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  2. ^ "NASA - Catalog of Solar Eclipses of Saros 158". eclipse.gsfc.nasa.gov.
  3. ^ Note S1: Eclipses & Predictions in Freeth, Tony (2014). "Eclipse Prediction on the Ancient Greek Astronomical Calculating Machine Known as the Antikythera Mechanism". PLOS ONE. 9 (7): e103275. Bibcode:2014PLoSO...9j3275F. doi:10.1371/journal.pone.0103275. PMC 4116162. PMID 25075747.

External links[edit]