Jump to content

Solar eclipse of November 14, 2031

From Wikipedia, the free encyclopedia
Solar eclipse of November 14, 2031
Map
Type of eclipse
NatureHybrid
Gamma0.3078
Magnitude1.0106
Maximum eclipse
Duration68 s (1 min 8 s)
Coordinates0°36′S 137°36′W / 0.6°S 137.6°W / -0.6; -137.6
Max. width of band38 km (24 mi)
Times (UTC)
Greatest eclipse21:07:31
References
Saros143 (24 of 72)
Catalog # (SE5000)9578

A total solar eclipse will occur at the Moon's ascending node of orbit on Friday, November 14, 2031, with a magnitude of 1.0106. It is a hybrid event, with portions of its central path near sunrise and sunset as an annular eclipse. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

Images[edit]


Animated path

Related eclipses[edit]

Eclipses of 2031[edit]

Metonic[edit]

Tzolkinex[edit]

Half-Saros[edit]

Tritos[edit]

Solar Saros 143[edit]

Inex[edit]

Triad[edit]

Solar eclipses of 2029–2032[edit]

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[1]

The partial solar eclipses on January 14, 2029 and July 11, 2029 occur in the previous lunar year eclipse set.

Solar eclipse series sets from 2029 to 2032
Descending node   Ascending node
Saros Map Gamma Saros Map Gamma
118 June 12, 2029

Partial
1.29431 123 December 5, 2029

Partial
−1.06090
128 June 1, 2030

Annular
0.56265 133 November 25, 2030

Total
−0.38669
138 May 21, 2031

Annular
−0.19699 143 November 14, 2031

Hybrid
0.30776
148 May 9, 2032

Annular
−0.93748 153 November 3, 2032

Partial
1.06431

Saros 143[edit]

This eclipse is a part of Saros series 143, repeating every 18 years, 11 days, and containing 72 events. The series started with a partial solar eclipse on March 7, 1617. It contains total eclipses from June 24, 1797 through October 24, 1995; hybrid eclipses from November 3, 2013 through December 6, 2067; and annular eclipses from December 16, 2085 through September 16, 2536. The series ends at member 72 as a partial eclipse on April 23, 2897. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of totality was produced by member 16 at 3 minutes, 50 seconds on August 19, 1887, and the longest duration of annularity will be produced by member 51 at 4 minutes, 54 seconds on September 6, 2518. All eclipses in this series occur at the Moon’s ascending node of orbit.[2]

Series members 12–33 occur between 1801 and 2200:
12 13 14

July 6, 1815

July 17, 1833

July 28, 1851
15 16 17

August 7, 1869

August 19, 1887

August 30, 1905
18 19 20

September 10, 1923

September 21, 1941

October 2, 1959
21 22 23

October 12, 1977

October 24, 1995

November 3, 2013
24 25 26

November 14, 2031

November 25, 2049

December 6, 2067
27 28 29

December 16, 2085

December 29, 2103

January 8, 2122
30 31 32

January 20, 2140

January 30, 2158

February 10, 2176
33

February 21, 2194

Metonic series[edit]

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.

21 eclipse events between June 21, 1982, and June 21, 2058
June 21 April 8–9 January 26 November 13–14 September 1–2
107 109 111 113 115
June 21, 1963 April 9, 1967 January 26, 1971 November 14, 1974 September 2, 1978
117 119 121 123 125

June 21, 1982

April 9, 1986

January 26, 1990

November 13, 1993

September 2, 1997
127 129 131 133 135

June 21, 2001

April 8, 2005

January 26, 2009

November 13, 2012

September 1, 2016
137 139 141 143 145

June 21, 2020

April 8, 2024

January 26, 2028

November 14, 2031

September 2, 2035
147 149 151 153 155

June 21, 2039

April 9, 2043

January 26, 2047

November 14, 2050

September 2, 2054
157

June 21, 2058

References[edit]

  1. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  2. ^ "NASA - Catalog of Solar Eclipses of Saros 143". eclipse.gsfc.nasa.gov.

External links[edit]