Skip to main content
Log in

Unraveling the enhanced stability and strength of Al Σ9 (221)[\( 1\bar{1}0 \)] symmetric tilt grain boundary with Mg segregation

  • Computation & theory
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The marked Mg segregation at grain boundaries (GBs) in nanocrystalline Al alloys usually contributes additional GB segregation strengthening. To gain a further understanding of this phenomenon, molecular dynamics simulations were conducted to reveal the Mg segregation behavior at Al Σ9 (221)[\( 1\bar{1}0 \)] symmetric tilt grain boundary (STGB) and its effects on the GB stability and strength. Results reveal that Mg dopants have a large driving force to segregate at Al GBs. Such Mg segregation not only enhances the strength of Σ9 (221) STGB but also improves GB stability. It is found that the Mg segregation turns to enlarge and narrow the strain intervals of stable and thickening stages of Σ9 (221) STGB during tensile test, indicative of the Mg-induced stabilizing effect on the GB structural integrity. Calculations further elucidate that the segregated Mg dopants increase the critical stress for dislocation nucleation, which accounts for the remarkably increased tensile strength of Σ9 (221) STGB with Mg segregation. Such retarded dislocation nucleation is ascribed to the decrement in boundary free volume by Mg segregation. This work will provide important atomic-scale insights into the extra GB strengthening in Al alloys deriving from Mg segregation.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Jia H, Bjørge R, Cao L, Song H, Marthinsen K, Li Y (2018) Quantifying the grain boundary segregation strengthening induced by post-ECAP aging in an Al-5Cu alloy. Acta Mater 155:199–213. https://doi.org/10.1016/j.actamat.2018.05.075

    Article  CAS  Google Scholar 

  2. Zha M, Li Y, Mathiesen RH, Bjørge R, Roven HJ (2015) Microstructure evolution and mechanical behavior of a binary Al-7Mg alloy processed by equal-channel angular pressing. Acta Mater 84:42–54. https://doi.org/10.1016/j.actamat.2014.10.025

    Article  CAS  Google Scholar 

  3. Zha M, Zhang H, Jia H, Gao Y, Jin S, Sha G, Bjørge R, Mathiesen RH, Roven HJ, Wang H, Li Y (2021) Prominent role of multi-scale microstructural heterogeneities on superplastic deformation of a high solid solution Al-7Mg alloy. Int J Plast 146:103108. https://doi.org/10.1016/j.ijplas.2021.103108

    Article  CAS  Google Scholar 

  4. Sauvage X, Duchaussoy A, Zaher G (2019) Strain induced segregations in severely deformed materials. Mater Trans 60(7):1151–1158. https://doi.org/10.2320/matertrans.MF201919

    Article  CAS  Google Scholar 

  5. Swaminathan S, Ravi Shankar M, Rao BC, Compton WD, Chandrasekar S, King AH, Trumble KP (2007) Severe plastic deformation (SPD) and nanostructured materials by machining. J Mater Sci 42(5):1529–1541. https://doi.org/10.1007/s10853-006-0745-9

    Article  CAS  Google Scholar 

  6. Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Bulk nanostructured materials from severe plastic deformation. Prog Mater Sci 45(2):103–189. https://doi.org/10.1016/S0079-6425(99)00007-9

    Article  CAS  Google Scholar 

  7. Chookajorn T, Murdoch HA, Schuh CA (2012) Design of stable nanocrystalline alloys. Science 337:951–954. https://doi.org/10.1126/science.1224737

    Article  CAS  Google Scholar 

  8. Sauvage X, Murashkin MY, Straumal BB, Bobruk EV, Valiev RZ (2015) Ultrafine grained structures resulting from SPD-induced phase transformation in Al-Zn alloys. Adv Eng Mater 17(12):1821–1827. https://doi.org/10.1002/adem.201500151

    Article  CAS  Google Scholar 

  9. Raabe D, Herbig M, Sandlöbes S, Li Y, Tytko D, Kuzmina M, Ponge D, Choi PP (2014) Grain boundary segregation engineering in metallic alloys: a pathway to the design of interfaces. Curr Opin Solid State Mater Sci 18(4):253–261. https://doi.org/10.1016/j.cossms.2014.06.002

    Article  CAS  Google Scholar 

  10. Koch CC, Scattergood RO, Darling KA, Semones JE (2008) Stabilization of nanocrystalline grain sizes by solute additions. J Mater Sci 43(23–24):7264–7272. https://doi.org/10.1007/s10853-008-2870-0

    Article  CAS  Google Scholar 

  11. Xue H, Luo Y, Tang F, Yu X, Lu X, Ren J (2021) Solute segregation induced stabilizing and strengthening effects on Ni Σ3 [110](111) symmetrical tilt grain boundary in nickel-based superalloys. J Mater Res Technol 11:1281–1289. https://doi.org/10.1016/j.jmrt.2021.01.066

    Article  CAS  Google Scholar 

  12. Xue H, Luo Y, Tang F, Lu X, Ren J (2021) Segregation behavior of alloying elements at Ni Σ5 [001](210) symmetrical tilt grain boundary in nickel-based superalloys and their stabilization and strengthening mechanisms for the grain boundary. Mater Chem Phys 258:123977. https://doi.org/10.1016/j.matchemphys.2020.123977

    Article  CAS  Google Scholar 

  13. Lu K (2016) Stabilizing nanostructures in metals using grain and twin boundary architectures. Nat Rev Mater 1(5):16019. https://doi.org/10.1038/natrevmats.2016.19

    Article  CAS  Google Scholar 

  14. Tytko D, Choi P-P, Klöwer J, Kostka A, Inden G, Raabe D (2012) Microstructural evolution of a Ni-based superalloy (617B) at 700°C studied by electron microscopy and atom probe tomography. Acta Mater 60(4):1731–1740. https://doi.org/10.1016/j.actamat.2011.11.020

    Article  CAS  Google Scholar 

  15. Jang S, Purohit Y, Irving DL, Padgett C, Brenner D, Scattergood RO (2008) Influence of Pb segregation on the deformation of nanocrystalline Al: Insights from molecular simulations. Acta Mater 56(17):4750–4761. https://doi.org/10.1016/j.actamat.2008.05.024

    Article  CAS  Google Scholar 

  16. Schoenitz M, Dreizin E (2003) Structure and properties of Al–Mg mechanical alloys. J Mater Res 18:1827–1836. https://doi.org/10.1557/JMR.2003.0255

    Article  CAS  Google Scholar 

  17. Król M, Tański T, Snopiński P, Tomiczek B (2016) Structure and properties of aluminium-magnesium casting alloys after heat treatment. J Therm Anal Calorim 127(1):299–308. https://doi.org/10.1007/s10973-016-5845-4

    Article  CAS  Google Scholar 

  18. Valiev RZ, Enikeev NA, Murashkin MY, Kazykhanov VU, Sauvage X (2010) On the origin of the extremely high strength of ultrafine-grained Al alloys produced by severe plastic deformation. Scr Mater 63(9):949–952. https://doi.org/10.1016/j.scriptamat.2010.07.014

    Article  CAS  Google Scholar 

  19. Malls T, Chaturvedi MC (1982) Grain-boundary segregation in an AI-8 wt % Mg alloy. J Mater Sci 17:1479–1486. https://doi.org/10.1007/BF00752263

    Article  Google Scholar 

  20. Masuda T, Sauvage X, Hirosawa S, Horita Z (2020) Achieving highly strengthened Al-Cu-Mg alloy by grain refinement and grain boundary segregation. Mater Sci Eng A 793:139668. https://doi.org/10.1016/j.msea.2020.139668

    Article  CAS  Google Scholar 

  21. Sha G, Yao L, Liao X, Ringer SP, Chao Duan Z, Langdon TG (2011) Segregation of solute elements at grain boundaries in an ultrafine grained Al-Zn-Mg-Cu alloy. Ultramicroscopy 111(6):500–505. https://doi.org/10.1016/j.ultramic.2010.11.013

    Article  CAS  Google Scholar 

  22. Liddicoat PV, Liao XZ, Zhao Y, Zhu Y, Murashkin MY, Lavernia EJ, Valiev RZ, Ringer SP (2010) Nanostructural hierarchy increases the strength of aluminium alloys. Nat Commun 1:63. https://doi.org/10.1038/ncomms1062

    Article  CAS  Google Scholar 

  23. Devaraj A, Wang W, Vemuri R, Kovarik L, Jiang X, Bowden M, Trelewicz JR, Mathaudhu S, Rohatgi A (2019) Grain boundary segregation and intermetallic precipitation in coarsening resistant nanocrystalline aluminum alloys. Acta Mater 165:698–708. https://doi.org/10.1016/j.actamat.2018.09.038

    Article  CAS  Google Scholar 

  24. Zhao D, Løvvik OM, Marthinsen K, Li Y (2018) Segregation of Mg, Cu and their effects on the strength of Al Σ5 (210)[001] symmetrical tilt grain boundary. Acta Mater 145:235–246. https://doi.org/10.1016/j.actamat.2017.12.023

    Article  CAS  Google Scholar 

  25. Hu J, Xiao Z, Huang Y (2021) Segregation of solute elements and their effects on the strength of Al Σ5 (210) [001] symmetrical tilt grain boundary in 2219 alloys. Mater Sci Eng A 800:140261. https://doi.org/10.1016/j.msea.2020.140261

    Article  CAS  Google Scholar 

  26. Zhang S, Kontsevoi OY, Freeman AJ, Olson GB (2012) Cohesion enhancing effect of magnesium in aluminum grain boundary: A first-principles determination. Appl Phys Lett 100(23):231904. https://doi.org/10.1063/1.4725512

    Article  CAS  Google Scholar 

  27. Kazemi A, Yang S (2019) Atomistic study of the effect of magnesium dopants on the strength of nanocrystalline aluminum. JOM 71(4):1209–1214. https://doi.org/10.1007/s11837-019-03373-3

    Article  CAS  Google Scholar 

  28. Kazemi A, Yang S (2021) Effects of magnesium dopants on grain boundary migration in aluminum-magnesium alloys. Comput Mater Sci 188:110130. https://doi.org/10.1016/j.commatsci.2020.110130

    Article  CAS  Google Scholar 

  29. Lee B-H, Kim S-H, Park J-H, Kim H-W, Lee J-C (2016) Role of Mg in simultaneously improving the strength and ductility of Al-Mg alloys. Mater Sci Eng A 657:115–122. https://doi.org/10.1016/j.msea.2016.01.089

    Article  CAS  Google Scholar 

  30. Mendelev MI, Asta M, Rahman MJ, Hoyt JJ (2009) Development of interatomic potentials appropriate for simulation of solid-liquid interface properties in Al-Mg alloys. Philos Mag 89(34–36):3269–3285. https://doi.org/10.1080/14786430903260727

    Article  CAS  Google Scholar 

  31. Jelinek B, Houze J, Kim S, Horstemeyer MF, Baskes MI, Kim S-G (2007) Modified embedded-atom method interatomic potentials for the Mg-Al alloy system. Phys Rev B 75(5):054106. https://doi.org/10.1103/PhysRevB.75.054106

    Article  CAS  Google Scholar 

  32. Stukowski A (2010) Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool. Modell Simul Mater Sci Eng 18(1):015012. https://doi.org/10.1088/0965-0393/18/1/015012

    Article  Google Scholar 

  33. Stukowski A, Bulatov VV, Arsenlis A (2012) Automated identification and indexing of dislocations in crystal interfaces. Modell Simul Mater Sci Eng 20(8):085007. https://doi.org/10.1088/0965-0393/20/8/085007

    Article  Google Scholar 

  34. Shen XJ, Tanguy D, Connétable D (2014) Atomistic modelling of hydrogen segregation to the Σ9 221 [110] symmetric tilt grain boundary in Al. Philos Mag 94(20):2247–2261. https://doi.org/10.1080/14786435.2014.910333

    Article  CAS  Google Scholar 

  35. Wan L, Wang S (2010) Shear response of the Σ9 <110> {221} symmetric tilt grain boundary in fcc metals studied by atomistic simulation methods. Phys Rev B 82(21):214112. https://doi.org/10.1103/PhysRevB.82.214112

    Article  CAS  Google Scholar 

  36. Hardouinduparc O, Couzinie J, Thibaultpenisson J, Lartiguekorinek S, Decamps B, Priester L (2007) Atomic structures of symmetrical and asymmetrical facets in a near Σ=9{221} tilt grain boundary in copper. Acta Mater 55(5):1791–1800. https://doi.org/10.1016/j.actamat.2006.10.041

    Article  CAS  Google Scholar 

  37. Mahjoub R, Laws KJ, Stanford N, Ferry M (2018) General trends between solute segregation tendency and grain boundary character in aluminium—an ab initio study. Acta Mater 158:257–268. https://doi.org/10.1016/j.actamat.2018.07.069

    Article  CAS  Google Scholar 

  38. Babicheva RI, Dmitriev SV, Bai L, Zhang Y, Kok SW, Kang G, Zhou K (2016) Effect of grain boundary segregation on the deformation mechanisms and mechanical properties of nanocrystalline binary aluminum alloys. Comput Mater Sci 117:445–454. https://doi.org/10.1016/j.commatsci.2016.02.013

    Article  CAS  Google Scholar 

  39. Saber M, Kotan H, Koch CC, Scattergood RO (2013) Thermodynamic stabilization of nanocrystalline binary alloys. J Appl Phys 113(6):063515. https://doi.org/10.1063/1.4791704

    Article  CAS  Google Scholar 

  40. Liu F, Kirchheim R (2004) Nano-scale grain growth inhibited by reducing grain boundary energy through solute segregation. J Cryst Growth 264(1–3):385–391. https://doi.org/10.1016/j.jcrysgro.2003.12.021

    Article  CAS  Google Scholar 

  41. Lejček P, Šob M, Paidar V (2017) Interfacial segregation and grain boundary embrittlement: an overview and critical assessment of experimental data and calculated results. Prog Mater Sci 87:83–139. https://doi.org/10.1016/j.pmatsci.2016.11.001

    Article  CAS  Google Scholar 

  42. Turlo V, Rupert TJ (2018) Grain boundary complexions and the strength of nanocrystalline metals: dislocation emission and propagation. Acta Mater 151:100–111. https://doi.org/10.1016/j.actamat.2018.03.055

    Article  CAS  Google Scholar 

  43. Pun SC, Wang W, Khalajhedayati A, Schuler JD, Trelewicz JR, Rupert TJ (2017) Nanocrystalline Al-Mg with extreme strength due to grain boundary doping. Mater Sci Eng A 696:400–406. https://doi.org/10.1016/j.msea.2017.04.095

    Article  CAS  Google Scholar 

  44. Rahman MJ, Zurob HS, Hoyt JJ (2016) Molecular dynamics study of solute pinning effects on grain boundary migration in the aluminum magnesium alloy system. Metall Mater Trans A 47(4):1889–1897. https://doi.org/10.1007/s11661-016-3322-0

    Article  CAS  Google Scholar 

  45. Borovikov V, Mendelev MI, King AH (2017) Effects of solutes on dislocation nucleation from grain boundaries. Int J Plast 90:146–155. https://doi.org/10.1016/j.ijplas.2016.12.009

    Article  CAS  Google Scholar 

  46. Liao XZ, Zhou F, Lavernia EJ, He DW, Zhu YT (2003) Deformation twins in nanocrystalline Al. Appl Phys Lett 83(24):5062–5064. https://doi.org/10.1063/1.1633975

    Article  CAS  Google Scholar 

  47. Chen M, Ma E, Hemker KJ, Sheng H, Wang Y, Cheng X (2003) Deformation twinning in nanocrystalline aluminum. Science 300(5623):1275–1277. https://doi.org/10.1126/science.1083727

    Article  CAS  Google Scholar 

  48. Zhu YT, Liao XZ, Wu XL (2012) Deformation twinning in nanocrystalline materials. Prog Mater Sci 57(1):1–62. https://doi.org/10.1016/j.pmatsci.2011.05.001

    Article  CAS  Google Scholar 

  49. Frøseth AG, Derlet PM, Van Swygenhoven H (2005) Twinning in nanocrystalline fcc metals. Adv Eng Mater 7(1–2):16–20. https://doi.org/10.1002/adem.200400163

    Article  CAS  Google Scholar 

  50. Zhao D, Løvvik OM, Marthinsen K, Li Y (2016) Impurity effect of Mg on the generalized planar fault energy of Al. J Mater Sci 51(14):6552–6568. https://doi.org/10.1007/s10853-016-9834-6

    Article  CAS  Google Scholar 

  51. Yamakov V, Wolf D, Salazar M, Phillpot SR, Gleiter H (2001) Length-scale effects in the nucleation of extended dislocations in nanocrystalline Al by molecular-dynamics simulation. Acta Mater 49:2713–2722. https://doi.org/10.1016/S1359-6454(01)00167-7

    Article  CAS  Google Scholar 

  52. Zhang L, Lu C, Tieu K, Zhao X, Pei L (2015) The shear response of copper bicrystals with Sigma11 symmetric and asymmetric tilt grain boundaries by molecular dynamics simulation. Nanoscale 7(16):7224–7233. https://doi.org/10.1039/c4nr07496c

    Article  CAS  Google Scholar 

  53. Tucker GJ, Tschopp MA, McDowell DL (2010) Evolution of structure and free volume in symmetric tilt grain boundaries during dislocation nucleation. Acta Mater 58(19):6464–6473. https://doi.org/10.1016/j.actamat.2010.08.008

    Article  CAS  Google Scholar 

  54. Vo NQ, Schäfer J, Averback RS, Albe K, Ashkenazy Y, Bellon P (2011) Reaching theoretical strengths in nanocrystalline Cu by grain boundary doping. Scr Mater 65(8):660–663. https://doi.org/10.1016/j.scriptamat.2011.06.048

    Article  CAS  Google Scholar 

  55. Li A, Szlufarska I (2017) Morphology and mechanical properties of nanocrystalline Cu/Ag alloy. J Mater Sci 52(8):4555–4567. https://doi.org/10.1007/s10853-016-0700-3

    Article  CAS  Google Scholar 

  56. Uesugi T, Higashi K (2011) First-principles calculation of grain boundary energy and grain boundary excess free volume in aluminum: role of grain boundary elastic energy. J Mater Sci 46(12):4199–4205. https://doi.org/10.1007/s10853-011-5305-2

    Article  CAS  Google Scholar 

  57. Huang Z, Chen F, Shen Q, Zhang L, Rupert TJ (2019) Combined effects of nonmetallic impurities and planned metallic dopants on grain boundary energy and strength. Acta Mater 166:113–125. https://doi.org/10.1016/j.actamat.2018.12.031

    Article  CAS  Google Scholar 

  58. Sun H, Singh CV (2020) Temperature dependence of grain boundary excess free volume. Scr Mater 178:71–76. https://doi.org/10.1016/j.scriptamat.2019.10.046

    Article  CAS  Google Scholar 

  59. Chang KI, Hong SI (2008) Effect of sulphur on the strengthening of a Zr–Nb alloy. J Nucl Mater 373(1–3):16–21. https://doi.org/10.1016/j.jnucmat.2007.04.045

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Natural Science Foundation of China [Grant No. 52001224]. The calculation was carried out at National Supercomputer Center in Tianjin.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dongdong Zhao or Yanjun Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Ghanshyam Pilania.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, N., Zhao, D., Shi, C. et al. Unraveling the enhanced stability and strength of Al Σ9 (221)[\( 1\bar{1}0 \)] symmetric tilt grain boundary with Mg segregation. J Mater Sci 57, 21591–21606 (2022). https://doi.org/10.1007/s10853-022-07934-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07934-x

Navigation