Skip to main content
Log in

Atomistic Study of the Effect of Magnesium Dopants on the Strength of Nanocrystalline Aluminum

  • Deformation and Transitions at Grain Boundaries
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Atomistic simulations have been used to study the deformation mechanisms of nanocrystalline pure Al and Al-Mg binary alloys. Voronoi tessellation was used to fully create a three-dimensional polycrystalline model with a grain size of 10 nm, while hybrid Monte Carlo and molecular dynamic simulations were used to achieve both mechanical and chemical equilibriums in nanocrystalline Al-5 at.%Mg. The results of tensile tests show an improved strength, including the yield strength and ultimate strength, through doping 5 at.%Mg into nanocrystalline aluminum. The results of atomic structures clearly reveal the multiple strengthening mechanisms related to doping in Al-Mg alloys. At the early deformation stage, up to an applied strain of 0.2, the strengthening mechanism of the dopants exhibits as dopant pinning grain boundary (GB) migration. However, at the late deformation stage, which is close to failure of nanocrystalline materials, dopants can prohibit the initiation of intergranular cracks and also impede propagation of existing cracks along the GBs, thus improving the flow stress of Al-Mg alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. I.A. Ovid’ko, R.Z. Valiev, and Y.T. Zhu, Prog. Mater Sci. 94, 462 (2018).

    Article  Google Scholar 

  2. S.C. Pun, W.B. Wang, A. Khalajhedayati, J.D. Schuler, J.R. Trelewicz, and T.J. Rupert, Mater. Sci. Eng., A 696, 400 (2017).

    Article  Google Scholar 

  3. T. Chookajorn, H.A. Murdoch, and C.A. Schuh, Science 337, 951 (2012).

    Article  Google Scholar 

  4. M. Rajagopalan, M.A. Bhatia, M.A. Tschopp, D.J. Srolovitz, and K.N. Solanki, Acta Mater. 73, 312 (2014).

    Article  Google Scholar 

  5. P.R. Cantwell, M. Tang, S.J. Dillon, J. Luo, G.S. Rohrer, and M.P. Harmer, Acta Mater. 62, 1 (2014).

    Article  Google Scholar 

  6. T. Frolov and Y. Mishin, J. Chem. Phys. 143, 044706 (2015).

    Article  Google Scholar 

  7. W.D. Kaplan, D. Chatain, P. Wynblatt, and W.C. Carter, J. Mater. Sci. 48, 5681 (2013).

    Article  Google Scholar 

  8. T. Hu, S.F. Yang, N.X. Zhou, Y.Y. Zhang, and J. Luo, Nat. Commun. 9, 2764 (2018).

    Article  Google Scholar 

  9. S.F. Yang, N.X. Zhou, H. Zheng, S.P. Ong, and J. Luo, Phys. Rev. Lett. 120, 085702 (2018).

    Article  Google Scholar 

  10. J. Luo, Crit. Rev. Solid State Mater. Sci. 32, 67 (2007).

    Article  Google Scholar 

  11. J. Luo, J. Materiomics 1, 22 (2015).

    Article  Google Scholar 

  12. T. Frolov, M. Asta, and Y. Mishin, Curr. Opin. Solid St. M. 20, 308 (2016).

    Article  Google Scholar 

  13. T. Frolov, M. Asta, and Y. Mishin, Phys. Rev. B 92, 5 (2015).

    Article  Google Scholar 

  14. Y. Mishin, W.J. Boettinger, J.A. Warren, and G.B. McFadden, Acta Mater. 57, 3771 (2009).

    Article  Google Scholar 

  15. T. Frolov, S.V. Divinski, M. Asta, and Y. Mishin, Phys. Re. Lett. 110, 255502 (2013).

    Article  Google Scholar 

  16. B.-H. Lee, S.-H. Kim, J.-H. Park, H.-W. Kim, and J.-C. Lee, Mater. Sci. Eng., A 657, 115 (2016).

    Article  Google Scholar 

  17. D. Olmsted, L. Hectorjr, and W. Curtin, J. Mech. Phys. Solids 54, 1763 (2006).

    Article  Google Scholar 

  18. W.W.A. Devaraj, R. Vemuri, L. Kovarik, X. Jiang, M. Bowden, J.R. Trelewicz, S. Mathaudhu, and A. Rohatgie, Acta Mater. 165, 698 (2018).

    Article  Google Scholar 

  19. X. Sauvage, N. Enikeev, R. Valiev, Y. Nasedkina, and M. Murashkin, Acta Mater. 72, 125 (2014).

    Article  Google Scholar 

  20. L. Zhang, Y. Shibuta, X. Huang, C. Lu, and M. Liu, Comp. Mater. Sci. 156, 421 (2019).

    Article  Google Scholar 

  21. M.I. Mendelev, M. Asta, M.J. Rahman, and J.J. Hoyt, Philos. Mag. 89, 3269 (2009).

    Article  Google Scholar 

  22. B. Jelinek, J. Houze, S. Kim, M.F. Horstemeyer, M.I. Baskes, and S.-G. Kim, Phys. Rev. B 75, 054106 (2007).

    Article  Google Scholar 

  23. X.-Y. Liu, P.P. Ohotnicky, J.B. Adams, C.L. Rohrer, and R.W. Hyland, Surf. Sci. 373, 357 (1997).

    Article  Google Scholar 

  24. R.I. Babicheva, S.V. Dmitriev, L.C. Bai, Y. Zhang, S.W. Kok, G.Z. Kang, and K. Zhou, Comp. Mater. Sci. 117, 445 (2016).

    Article  Google Scholar 

  25. B. Sadigh, P. Erhart, A. Stukowski, A. Caro, E. Martinez, and L. Zepeda-Ruiz, Phys. Rev. B 85, 184203 (2012).

    Article  Google Scholar 

  26. S. Jonathan, S. Alexander, and A. Karsten, Acta Mater. 59, 29572968 (2011).

    Google Scholar 

  27. S. Plimpton, J. Comput. Phys. 117, 1 (1995).

    Article  Google Scholar 

  28. A. Stukowski, Model. Simul. Mater. Sc. 18, 015012 (2010).

    Article  Google Scholar 

  29. M.J. Rahman, H.S. Zurob, and J.J. Hoyt, Metall. Mater. Trans. A 47a, 1889 (2016).

  30. S. Hocker, M. Hummel, P. Binkele, H. Lipp, and S. Schmauder, Comput. Mater. Sci. 116, 32 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the faculty start-up funding provided by Purdue School of Engineering and Technology at Indiana University Purdue University, Indianapolis. This research was supported in part by Lilly Endowment, Inc., through its support for the Indiana University Pervasive Technology Institute, and in part by the Indiana METACyt Initiative. The Indiana METACyt Initiative at IU was also supported in part by Lilly Endowment, Inc. This work used the Extreme Science and Engineering Discovery Environment (XSEDE) under Award Allocation Number TG-MSS180015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengfeng Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazemi, A., Yang, S. Atomistic Study of the Effect of Magnesium Dopants on the Strength of Nanocrystalline Aluminum. JOM 71, 1209–1214 (2019). https://doi.org/10.1007/s11837-019-03373-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03373-3

Navigation