The work presented here was motivated by the need to develop a predictive model for thermodynamic stabilization of binary alloys that is applicable to strongly segregating size-misfit solutes, and that can use available input data for a wide range of solvent-solute combinations. This will serve as a benchmark for selecting solutes and assessing the possible contribution of thermodynamic stabilization for development of high-temperature nanocrystalline alloys. Following a regular solution model that distinguishes the grain boundary and grain interior volume fractions by a transitional interface in a closed system, we include both the chemical and elastic strain energy contributions to the mixing enthalpy ΔHmix using an appropriately scaled linear superposition. The total Gibbs mixing free energy ΔGmix is minimized with respect to simultaneous variations in the grain-boundary volume fraction and the solute contents in the grain boundary and grain interior. The Lagrange multiplier method was used to obtain numerical solutions with the constraint of fixed total solute content. The model predictions are presented using a parametric variation of the required input parameters. Applications are then given for the dependence of the nanocrystalline grain size on temperature and total solute content for selected binary systems where experimental results suggest that thermodynamic stabilization could be effective.

1.
C.
Koch
,
R.
Scattergood
,
K.
Darling
, and
J.
Semones
,
J. Mater. Sci.
43
,
7264
(
2008
).
2.
J.
Weissmüller
,
Nanostruct. Mater.
3
,
261
(
1993
).
3.
J.
Weissmuller
,
J. Mater. Res.
9
,
4
(
1994
).
4.
E. D.
Hondros
,
in Energetics of Solid-Liquid Interfaces
(
Butterworth
,
London
,
1969
),
p
77
.
5.
B.
Färber
,
E.
Cadel
,
A.
Menand
,
G.
Schmitz
, and
R.
Kirchheim
,
Acta Mater.
48
,
789
(
2000
).
6.
J.
Weissmüller
,
W.
Krauss
,
T.
Haubold
,
R.
Birringer
, and
H.
Gleiter
,
Nanostruct. Mater.
1
,
439
(
1992
).
7.
C. D.
Terwilliger
and
Y.-M.
Chiang
,
Acta Metall. Mater.
43
,
319
(
1995
).
8.
Y. R.
Abe
and
W. L.
Johnson
,
Mater. Sci. Forum
88–90
,
513
(
1992
).
9.
E.
Ma
, Minerals Metals and Materials Society, Chemistry and Physics of Materials Committee, Minerals Metals and Materials Society, Thermodynamics and Phase Equilibria Committee, and Minerals Metals and Materials Society Meeting,
Chemistry and Physics of Nanostructures and Related Non-Equilibrium Materials
(
The Society
,
Warrendale, PA
,
1997
).
10.
C. E.
Krill
,
R.
Klein
,
S.
Janes
, and
R.
Birringer
, “
Mechanically alloyed and nanocrystalline materials
,”
Mater. Sci. Forum
179
,
443
(
1995
).
11.
C. E.
Krill
,
H.
Ehrhardt
, and
R.
Birringer
,
Z. Metallkd.
96
,
1134
(
2005
).
12.
B. K.
VanLeeuwen
,
K. A.
Darling
,
C. C.
Koch
,
R. O.
Scattergood
, and
B. G.
Butler
,
Acta Mater.
58
,
4292
(
2010
).
13.
K. A.
Darling
,
B. K.
VanLeeuwen
,
C. C.
Koch
, and
R. O.
Scattergood
,
Mater. Sci. Eng., A
527
,
3572
(
2010
).
14.
D.
McLean
,
Grain Boundaries in Metals
(
Clarendon
,
Oxford
,
1957
).
15.
J.
Friedel
,
Adv. Phys.
3
,
446
(
1954
).
16.
R.
Defay
,
I.
Prigogine
, and
A.
Bellemans
,
Surface Tension and Adsorption
(
Longmans
,
London
,
1966
).
17.
J. J.
Burton
and
E. S.
Machlin
,
Phys. Rev. Lett.
37
,
1433
(
1976
).
18.
P.
Wynblatt
and
R. C.
Ku
,
Surf. Sci.
65
,
511
(
1977
).
19.
P.
Wynblatt
and
D.
Chatain
,
Metall. Mater. Trans. A
37
,
2595
(
2006
).
20.
J. R.
Trelewicz
and
C. A.
Schuh
,
Phys. Rev. B
79
,
094112
(
2009
).
21.
T.
Chookajorn
,
H. A.
Murdoch
, and
C. A.
Schuh
,
Science
337
,
951
(
2012
).
22.
G.
Palumbo
,
S. J.
Thorpe
, and
K. T.
Aust
,
Scr. Metall. Mater.
24
,
1347
(
1990
).
23.
A. P.
Sutton
and
R. W.
Balluffi
,
Interfaces in Crystalline Materials
(
Clarendon
,
Oxford
,
1995
).
24.
O. C.
Hellman
and
D. N.
Seidman
,
Mater. Sci. Eng., A
327
,
24
(
2002
).
25.
D. A.
Porter
,
K. E.
Easterling
, and
M.
Sherif
,
Phase Transformations in Metals and Alloys
, 3rd ed. (
CRC/Taylor & Francis
[distributor],
Boca Raton, FL/London
,
2009
).
26.
W. R.
Tyson
and
W. A.
Miller
,
Surf. Sci.
62
,
267
(
1977
).
27.
L.
Vitos
,
A. V.
Ruban
,
H. L.
Skriver
, and
J.
Kollár
,
Surf. Sci.
411
,
186
(
1998
).
28.
F. R.
d. Boer
,
Cohesion in metals : transition metal alloys
(
Elsevier Scientific
,
New York, U.S.A.
,
1988
).
29.
M.
Atwater
and
K.
Darling
, ARL-TR-6007, May 2012 ed., ARL, 2012.
30.
M.
Atwater
, “Stabilizing Nanocrystalline Copper and Brass by Solute Addition,” Ph.D. dissertation
(North Carolina State University
,
2012
).
31.
T.
Frolov
,
K. A.
Darling
,
L. J.
Kecskes
, and
Y.
Mishin
,
Acta Mater.
60
,
2158
(
2012
).
32.
T.
Yamasaki
,
P.
Schloβmacher
,
K.
Ehrlich
, and
Y.
Ogino
,
Nanostruct. Mater.
10
,
375
(
1998
).
33.
T.
Yamasaki
,
Scr. Mater.
44
,
1497
(
2001
).
34.
A. J.
Detor
,
M. K.
Miller
, and
C. A.
Schuh
,
Philos. Mag.
86
,
4459
(
2006
).
35.
A. J.
Detor
and
C. A.
Schuh
,
Acta Mater.
55
,
4221
(
2007
).
36.
P.
Choi
,
T.
Al-Kassab
,
F.
Gärtner
,
H.
Kreye
, and
R.
Kirchheim
,
Mater. Sci. Eng., A
353
,
74
(
2003
).
37.
See supplementary material at http://dx.doi.org/10.1063/1.4791704 for a numerical solution of equilibrium grain size and interfacial solute excess using the Maple software.

Supplementary Material

You do not currently have access to this content.