Skip to main content
Log in

The influence of boron microalloying on the microstructural and mechanical properties of Ni-Mn-Sn-Gd shape memory alloy

  • Published:
Applied Physics A Aims and scope Submit manuscript

A Correction to this article was published on 10 July 2024

This article has been updated

Abstract

This study systematically investigates the microstructure, martensitic phase transformation, crystal structure, and mechanical properties of (Ni43Mn47Sn9Gd1)100−xBx (x = 0, 0.8, 1.5 and 3 at%) shape memory alloys. Experimental results reveal that these alloys consist of a matrix phase and precipitated phases. The introduction of Gd elements leads to the formation of milky-white particles dispersed along grain boundaries, with the composition identified as GdNiSn. When the B element content reaches 1.5 at%, bright-white particles form and are uniformly distributed within the matrix. Their concentration increases with higher levels of B doping, and they are characterized as Mn2B. Simultaneously, the initially present Gd-rich milky-white particles distributed along grain boundaries, exhibit a diminishing trend with increasing B doping. B doping elevates the alloy’s phase transition temperature, and the compressive strength of the alloy approximately follows a linear trend with increasing B content. At a B doping level of 3%, the annealed alloy demonstrates a compressive strength of up to 1313 MPa with a compressive fracture strain of 11.6%, marking a 110% improvement. For the as-cast alloy, a compressive strength of 1652 MPa is achieved, accompanied by a compressive fracture strain of 12.3%, representing a 130% enhancement. Transmission electron microscopy reveals pronounced twinning features on the alloy surface, resulting in the formation of numerous fine lines in the as-cast state, that are magnified into voids after heat treatment. This phenomenon is detrimental to the alloy’s mechanical performance; hence, the as-cast compressive strength is favored over the annealed state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors on reasonable request.

Change history

References

  1. H. Sehitoglu, Y. Wu, E. Er tekin, Elastocaloric effects in the extreme. Scr. Mater. 148, 122–126 (2018). https://doi.org/10.1016/j.scriptamat.2017.05.017

    Article  Google Scholar 

  2. B. Wang, Y. Liu, P. Ren, B. Xia, K. Ruan, J. Yi, J. Ding, C. Li, L. Wang, Large exchange bias after zero-field cooling from an unmagnetized state. Phys. Rev. Lett. 106, 077203 (2011). https://doi.org/10.1103/PhysRevLett.106.077203

    Article  ADS  Google Scholar 

  3. T. Miyakawa, T. Ito, X. Xu, T. Omori, R. Kainuma, Martensitic transformation near room temperature and hysteresis in (Ni–Co)50–Mn–Sn metamagnetic shape memory alloys. J. Alloys Compd. 913, 165136 (2022). https://doi.org/10.1016/j.jallcom.2022.165136

    Article  Google Scholar 

  4. Z. Wu, J. Guo, Z. Liang, Y. Zhang, X. Ye, J. Zhang, Y. Li, Y. Liu, H. Yang, Room temperature metamagnetic transformation of a tough dual-phase Ni–Mn–Sn–Fe ferromagnetic shape memory alloy. J. Alloys Compd. 829, 154606 (2020). https://doi.org/10.1016/j.jallcom.2020.154606

    Article  Google Scholar 

  5. G. Zhang, D. Li, C. Liu, Z. Li, B. Yang, H. Yan, X. Zhao, L. Zuo, Giant low-field actuated caloric effects in a textured Ni43Mn47Sn10 alloy. Scr. Mater. 201, 113947 (2021). https://doi.org/10.1016/j.scriptamat.2021.113947

    Article  Google Scholar 

  6. Y.H. Qu, D.Y. Cong, S.H. Li, S.H. Li, W.Y. Gui, Z.H. Nie, M.H. Zhang, Y. Ren, Y.D. Wang, Simultaneously achieved large reversible elastocaloric and magnetocaloric effects and their coupling in a magnetic shape memory alloy. Acta Mater. 151, 41–55 (2018). https://doi.org/10.1016/j.actamat.2018.03.031

    Article  ADS  Google Scholar 

  7. G. Zhang, Z. Li, J. Yang, B. Yang, D. Wang, Y. Zhang, E. Claude, L. Hou, X. Li, X. Zhao, L. Zuo, Giant elastocaloric effect in a Mn-rich Ni44Mn46Sn10 directionally solidified alloy. Appl. Phys. Lett. 116, 023902–002390 (2020). https://doi.org/10.1063/1.5133110

    Article  ADS  Google Scholar 

  8. Y. Shen, W. Sun, Z.Y. Wei, Q. Shen, Y.F. Zhang, J. Liu, Orientation dependent elastocaloric effect in directionally solidified Ni-Mn-Sn alloys. Scr. Mater. 163, 14–18 (2018). https://doi.org/10.1016/j.scriptamat.2018.12.026

    Article  Google Scholar 

  9. S. Tavares, K. Yang, M. Meyers, Heusler alloys: past, properties, new alloys, and prospects. Prog Mater. Sci. 132, 101017 (2023). https://doi.org/10.1016/j.pmatsci.2022.101017

    Article  Google Scholar 

  10. Y. Fen, X. Yuan, M. Zhou, L. Gao, Improvement of mechanical properties and elastocaloric effect in Ag doped Ni-Mn-In magnetic shape memory alloys. J. Alloys Compd. 944, 169143 (2023). https://doi.org/10.1016/j.jallcom.2023.169143

    Article  Google Scholar 

  11. H. Najam ul, J. Mohsan, S.I. Ahmad, R.K. Ur, K.A. Qayyum, R. Shania, J. Muhammad, K. Deokkee, Farooq, Tunable Martensitic Transformation and Magnetic Properties of Sm-Doped NiMnSn ferromagnetic shape memory alloys. Crystals. 11, 1115 (2021). https://doi.org/10.3390/CRYST11091115

    Article  Google Scholar 

  12. Y. Aydogdu, A.S. Turabi, M. Kok, A. Aydogdu, Z.D. Yakinci, M.A. Aksan, H.E. Karaca, The effect of sn content on mechanical, magnetization and shape memory behavior in NiMnSn alloys. J. Alloys Compd. 683, 339–345 (2016). https://doi.org/10.1016/j.jallcom.2016.05.108

    Article  Google Scholar 

  13. O. Pedro, C. Villa, M. Lluis, P. Antoni, D. Soto-Parra, J.L. Sánchez-Llamazares, H. Flores-Zúñiga, C. Frontera, Elastocaloric and magnetocaloric effects in Ni-Mn-Sn(Cu) shape-memory alloy. J. Appl. Phys. 113, 053506 (2013). https://doi.org/10.1063/1.4790140

    Article  ADS  Google Scholar 

  14. Z. Guan, J. Bai, Y. Zhang, S. Sun, J. Gu, X. Liang, Y. Zhang, C. Esling, X. Zhao, L. Zuo, Achieved good mechanical properties and large elastocaloric effect in Ni-Mn-Ti-Cu-B alloy: experiments and first-principles calculations. J. Alloys Compd. 930, 167477 (2023). https://doi.org/10.1016/j.jallcom.2022.167477

    Article  Google Scholar 

  15. W. Sun, J. Liu, B. Lu, Y. Li, A. Yan, Large elastocaloric effect at small transformation strain in Ni45Mn44Sn11 metamagnetic shape memory alloys. Scr. Mater. 114, 1–4 (2015). https://doi.org/10.1016/j.scriptamat.2015.11.021

    Article  Google Scholar 

  16. W. Sun, J. Liu, D. Zhao, M. Zhang, Directional solidification and elastocaloric effect in a Ni45Mn44Sn11 magnetic shape memory alloy. J. Phys. D: Appl. Phys. 50, 444001 (2017). https://doi.org/10.1016/j.scriptamat.2015.11.021

    Article  ADS  Google Scholar 

  17. Z. Yang, D.Y. Cong, L. Huang, Z.H. Nie, X.M. Sun, Q.H. Zhang, Y.D. Wang, Large elastocaloric effect in a Ni-Co-Mn-Sn magnetic shape memory alloy. Mater. Des. 92, 932–936 (2016). https://doi.org/10.1016/j.matdes.2015.12.118

    Article  Google Scholar 

  18. P. Cheng, G. Zhang, Z. Li, B. Yang, Z. Zhang, D. Wang, Y. Du, Combining magnetocaloric and elastocaloric effects to achieve a broad refrigeration temperature region in Ni43Mn41Co5Sn11 alloy. J. Magn. Magn. Mater. 550, 169082 (2022). https://doi.org/10.1016/j.jmmm.2022.169082

    Article  Google Scholar 

  19. L. Gao, K.F. Li, Y.C. Liang, Q.H. Song, Reversibility of magnetostructural transition and associated magnetocaloric effect above room temperature in Ni-Co-Mn-In-Gd polycrystal. J. Magn. Magn. Mater. 454, 337–341 (2018). https://doi.org/10.1016/j.jmmm.2018.01.065

    Article  Google Scholar 

  20. K.F. Li, L. Gao, Y. Liang, Martensitic Transformation and Magnetic Properties of Ni-Co-. Mater. Trans. 59, 224–229 (2018). https://doi.org/10.2320/matertrans.M2017311. Mn-In-Gd Ferromagnetic Shape Memory Alloys

    Article  ADS  Google Scholar 

  21. L. Gao, J.H. Sui, W. Cai, Influence of rare earth Gd addition on the structural and magnetic transitions of Ni-Mn-Ga alloys. J. Magn. Magn. Mater. 320, 63–67 (2008). https://doi.org/10.1016/j.jmmm.2007.05.006

    Article  ADS  Google Scholar 

  22. L. Gao, K.F. Li, Y.C. Liang, Q.H. Song, Reversibility of magnetostructural transition and associated magnetocaloric effect above room temperature in Ni-Co-Mn-In-Gd polycrystal. J. Magn. Magn. Mater. 320, 337–341 (2008). https://doi.org/10.1016/j.jmmm.2018.01.065

    Article  Google Scholar 

  23. C. Rodriguez, L.C. Brownl, The thermal effect due to stress-induced martensite formation in Β-CuAlNi single crystals. Metall. Mater. Trans. A 11, 147–151 (1980). https://doi.org/10.1007/BF02700450

    Article  ADS  Google Scholar 

  24. D. Cong, W. Xiong, A. Planes, Y. Ren, L. Manosa, P. Cao, Z. Nie, X. Sun, Z. Yang, X. Hong, Y. Wang, Colossal Elastocaloric Effect in Ferroelastic Ni-Mn-Ti alloys. Phys. Rev. Lett. 122, 255703 (2019). https://doi.org/10.1103/PhysRevLett.122.255703

    Article  ADS  Google Scholar 

  25. H. Yan, H. Liu, Y. Zhao, N. Jia, B. Yang, Z. Li, Y. Zhang, C. Esling, X. Zhao, L. Zuo, Impact of B alloying on ductility and phase transition in the Ni–Mn-based magnetic shape memory alloys: insights from first-principles calculation. J. Mater. Sci. Technol. 74, 27–34 (2020). https://doi.org/10.1016/j.jmst.2020.10.010

    Article  Google Scholar 

  26. X. Tang, Y. Feng, H. Wang, P. Wang, Enhanced elastocaloric effect and cycle stability in B and Cu co-doping Ni-Mn-ln polycrystals. Appl. Phys. Lett. 114, 033901 (2019). https://doi.org/10.1063/1.5080762

    Article  ADS  Google Scholar 

  27. Z. Yang, D.Y. Cong, X.M. Sun, Z.H. Nie, Y.D. Wang, Enhanced cyclablity of elastocaloric effect in boron-microalloyed Ni-Mn-ln magnetic shape memory alloys. Acta Mater. 127, 33–42 (2017). https://doi.org/10.1016/j.actamat.2017.01.025

    Article  ADS  Google Scholar 

  28. F. Xu, C. Zhu, J. Wang, F. Luo, X. Zhu, J. Xu, S. Chen, J. Wang, G. Ma, F. Chen, Y. Kuang, J. He, Z. Sun, Enhanced elastocaloric effect and mechanical properties of Gd-doped Ni-Co-Mn-Ti-Gd metamagnetic shape memory alloys. J. Alloys Compd. 960, 170768 (2022). https://doi.org/10.1016/j.jallcom.2023.170768

    Article  Google Scholar 

  29. L. Wang, H. Xuan, S. Liu, T. Cao, Z. Xie, X. Liang, F. Chen, K. Zhang, L. Feng, P. Han, Y. Wu, Enhanced elastocaloric effect and mechanical properties of Gd-doped Ni–Mn–Sn-Gd ferromagnetic shape memory alloys. J. Alloys Compd. 846, 156313 (2020). https://doi.org/10.1016/j.jallcom.2020.156313

    Article  Google Scholar 

  30. S. Franziska, L. Christian, K. Philipp, R. Stefan, S. Niklas, K. David, O. Konrad, G. Heiner, V. Olena, B. Stefan, N. Thomas, G. Oliver, Additive manufacturing of Ni-Mn-Sn shape memory Heusler alloy – microstructure and magnetic properties from powder to printed parts. Materialia. 29, 101783 (2023). https://doi.org/10.1016/j.mtla.2023.101783

    Article  Google Scholar 

  31. X. Zhang, H. Chen, S. Li, Y. Niu, T. Yin, C. Song, R. Lang, D. Cong, S. Li, Y. Wang, Enhanced cyclability of superelasticity and elastocaloric effect in Cu and B co-doped co-ni-ga shape memory alloys. J. Alloys Compd. 918, 165633 (2022). https://doi.org/10.1016/j.jallcom.2022.165633

    Article  Google Scholar 

  32. S. Liu, C.B. Ke, S. Cao, X. Ma, Z.X. Zhao, Y.W. Li, X.P. Zhang, An atomistic study of self-accommodation martensite morphologies and microstructure evolution during forward and reverse martensitic transformations in single crystal and bicrystal NiTi alloys. Comput. Mater. Sci. 210, 111445 (2022). https://doi.org/10.1016/j.commatsci.2022.111455

    Article  Google Scholar 

  33. W. Tong, L. Liang, J. Xu, H.J. Wang, J. Tian, L.M. Peng, Achieving enhanced mechanical, pseudoelastic and elastocaloric properties in Ni-Mn-Ga alloys via Dy micro-alloying and isothermal mechanical cyclic training. Scr. Mater. 209, 114393 (2022). https://doi.org/10.1016/j.commatsci.2022.111455

    Article  Google Scholar 

  34. Z. Guan, J. Bai, Y. Zhang, J. Gu, Y. Zhang, C. Esling, X. Zhao, L. Zuo, Ultrahigh cyclic stability and giant elastocaloric effect in directionally solidified (Ni50Mn28Fe2.5Ti19.5)99.4B0.6 alloy. Scr. Mater. 229, 115353 (2023). https://doi.org/10.1016/j.scriptamat.2023.115353

    Article  Google Scholar 

  35. G. Debottam, P. Gaurav, C. Santanu, D. Jayanta, Observation of a large magnetocaloric effect and suppressed transition in Ti doped Ni-Co-Mn-Sn ribbons upon annealing. J. Alloys Compd. 917, 165490 (2022). https://doi.org/10.1016/j.jallcom.2022.165490

    Article  Google Scholar 

  36. F. Masdeu, J. Pons, J. Torrens-seeea, Y. Chumlyakov, E. Cesari, Superelastic behavior and elastocaloric effect in a Ni51.5Fe21.5Ga27.0 ferromagnetic shape memory single crystal under compression. Mater. Sci. Eng. A 833, 142362 (2022). https://doi.org/10.1016/j.msea.2021.142362

    Article  Google Scholar 

  37. H. Wang, D. Li, G. Zhang, Z. Li, B. Yang, H. Yan, D. Cong, C. Esling, X. Zhao, L. Zuo, Highly sensitive elastocaloric response in a directionally solidified Ni50Mn33In15.5Cu1.5 alloy with strong A preferred orientation. Intermetallics. 140, 107379 (2022). https://doi.org/10.1016/j.intermet.2021.107379

    Article  Google Scholar 

  38. H. Xuan, L. Wang, T. Cao, S. Liu, Z. Xie, X. Liang, F. Chen, K. Zhang, L. Feng, P. Han, Y. Wu, Mechanical and elastocaloric effect of Fe and Co co-doped Ni–Mn–Al ferromagnetic shape memory alloy. Phys. Lett. A 402, 127362 (2021). https://doi.org/10.1016/j.intermet.2021.107379

    Article  Google Scholar 

  39. X. Tian, L. Zhou, K. Zhang, Q. Zhao, H. Li, D. Shi, T. Ma, C. Wang, Q. Wen, C. Tan, Screening for shape memory alloys with narrow thermal hysteresis using combined XGBoost and DFT calculation. Comput. Mater. Sci. 211, 111519 (2022). https://doi.org/10.1016/j.commatsci.2022.111519

    Article  Google Scholar 

  40. Z. Li, Z. Li, Y. Lu, X. Lu, L. Zuo, Enhanced elastocaloric effect and specific adiabatic temperature variation in Ni-Mn-In-Si-Cu shape memory alloys. J. Alloys Compd. 920, 165955 (2022). https://doi.org/10.1016/j.jallcom.2022.165955

    Article  Google Scholar 

  41. R.Y. Umetsu, K. Ito, W. Ito, K. Koyama, T. Kanomata, K. Ishida, R. Kainuma, Kinetic arrest behavior in martensitic transformation of NiCoMnSn metamagnetic shape memory alloy. J. Alloys Compd. 509, 1389–1393 (2011). https://doi.org/10.1016/j.jallcom.2010.10.176

    Article  Google Scholar 

  42. H. Zheng, W. Wang, S. Xue, Q. Zhai, J. Frenzel, Z. Luo, Composition-dependent crystal structure and martensitic transformation in Heusler Ni–Mn–Sn alloys. Acta Mater. 61, 4648–46565 (2013). https://doi.org/10.1016/j.actamat.2013.04.035

    Article  ADS  Google Scholar 

  43. Y. Feng, J. Gao, M. Zhou, H. Wang, Giant elastocaloric effect induced by lower stress in Ni-Mn-In-Fe ferromagnetic shape memory alloys. J. Magn. Magn. Mater. 563, 169906 (2022). https://doi.org/10.1016/j.jmmm.2022.169906

    Article  Google Scholar 

  44. Y. Zhu, H. Xuan, J. Su, F. Chen, K. Zhang, P. Han, J. Qiao, Large elastocaloric effect in as-cast Ni-Mn-Sn-Fe ferromagnetic shape memory alloys. Phys. Lett. A 451, 128374 (2022). https://doi.org/10.1016/j.jmmm.2022.169906

    Article  Google Scholar 

  45. Y. Zhang, S. Yang, L. Wang, S. Pan, J. Zhang, X. Liu, C. Wang, Development of boron-microalloyed Co–V–Al–Fe shape memory alloys. Intermetallics. 157, 107889 (2023). https://doi.org/10.1016/j.intermet.2023.107889

    Article  Google Scholar 

  46. W. Gui, Y. Qu, Y. Cao, Y. Zhao, C. Liu, Q. Zhou, J. Chen, Y. Liu, The effect of tb substitution for Ni on microstructure, martensitic transformation and cyclic stability of elastocaloric effect in Ni–Mn–Sn magnetic shape memory alloys. J. Mater. Res. Technol. 19, 4998–5007 (2022). https://doi.org/10.1016/j.jmrt.2022.07.018

    Article  Google Scholar 

  47. C. Tan, K. Zhang, X. Tian, W. Cai, Effect of Gd addition on microstructure, martensitic transformation and mechanical properties of Ni50Mn36Sn14 ferromagnetic shape memory alloy. J. Alloys Compd. 692, 288–293 (2017). https://doi.org/10.1016/j.jallcom.2016.09.060

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Science Foundation of China(NO.51401122).

Author information

Authors and Affiliations

Authors

Contributions

XX was involved in methodology, investigation, data curation, writing—original draft, and writing— reviewing and editing. XY was involved in supervision, project administration, and funding acquisition. LG was involved in supervision, conceptualization, resources, and writing—reviewing and editing. YF was involved in data curation, validation, and methodology. HW was involved in data curation, methodology, and formal analysis. XG was involved in supervision and formal analysis. HZ was involved in validation and investigation.

Corresponding author

Correspondence to Li Gao.

Ethics declarations

Ethical approval

All the authors declare that the manuscript does not have studies on human subjects, human data or tissue, or animals.

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Xin, X., Gao, L. et al. The influence of boron microalloying on the microstructural and mechanical properties of Ni-Mn-Sn-Gd shape memory alloy. Appl. Phys. A 130, 526 (2024). https://doi.org/10.1007/s00339-024-07686-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07686-2

Keywords

Navigation