Skip to main content
Log in

Impurity effect of Mg on the generalized planar fault energy of Al

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Generalized planar fault energy (GPFE) curves are widely used to evaluate the deformation behavior of metals and alloys. In the present work, a systematic analysis of the microscopic plastic deformation mechanism of face-centered cubic Al in comparison to Cu was conducted based on GPFE curves generated via first-principles calculations. Focus has been put on the effects of Mg impurities in terms of local concentration and local atomic arrangement nearby the deformation plane, upon the GPFE curve of Al, with the aim to investigate the twinnability of Al–Mg alloys subjected to plastic deformation. It is found that Mg exhibits a Suzuki segregation feature to the stacking fault of Al, either intrinsic or extrinsic. Mg atoms residing in the stacking fault plane can decrease the intrinsic stacking fault energy γ ISFE and enhance the twinning propensity of Al. However, the γ ISFE value does not decrease monotonically with increasing Mg concentration in the alloy, and a continuous twinnability increase with increasing Mg content is not observed. It is also seen that different local concentrations and atomic configurations of Mg atoms in the vicinity of deformation plane could yield a large variation of γ ISFE and the twinning propensity of Al. It is proposed that Mg alloying cannot substantially enhance the twinning propensity of Al alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Zha M, Li Y, Mathiesen RH, Bjørge R, Roven HJ (2014) Achieve high ductility and strength in an Al–Mg alloy by severe plastic deformation combined with inter-pass annealing. Mater Sci Eng, A 598:141–146

    Article  Google Scholar 

  2. Zha M, Li Y, Mathiesen RH, Bjørge R, Roven HJ (2015) Microstructure evolution and mechanical behavior of a binary Al-7 Mg alloy processed by equal-channel angular pressing. Acta Mater 84:42–54

    Article  Google Scholar 

  3. Sauvage X, Enikeev N, Valiev R, Nasedkina Y, Murashkin M (2014) Atomic-scale analysis of the segregation and precipitation mechanisms in a severely deformed Al–Mg alloy. Acta Mater 72:125–136

    Article  Google Scholar 

  4. Edalati K, Akama D, Nishio A, Lee S, Yonenaga Y, Cubero-Sesin JM, Horita Z (2014) Influence of dislocation–solute atom interactions and stacking fault energy on grain size of single-phase alloys after severe plastic deformation using high-pressure torsion. Acta Mater 69:68–77

    Article  Google Scholar 

  5. Jin S, Tao N, Marthinsen K, Li Y (2015) Deformation of an Al-7 Mg alloy with extensive structural micro-segregations during dynamic plastic deformation. Mater Sci Eng, A 628:160–167

    Article  Google Scholar 

  6. Lu K, Lu L, Suresh S (2009) Strengthening materials by engineering coherent internal boundaries at the nanoscale. Science 324:349–352

    Article  Google Scholar 

  7. Lu L, Chen X, Huang X, Lu K (2009) Revealing the maximum strength in nanotwinned copper. Science 323:607–610

    Article  Google Scholar 

  8. Muzyk M, Pakiela Z, Kurzydlowski KJ (2011) Ab initio calculations of the generalized stacking fault energy in aluminium alloys. Scr Mater 64:916–918

    Article  Google Scholar 

  9. Schulthess TC, Turchi PEA, Gonis A, Nieh TG (1998) Systematic study of stacking fault energies of random Al-based alloys. Acta Mater 46:2215–2221

    Article  Google Scholar 

  10. Morishige T, Hirata T, Uesugi T, Takigawa Y, Tsujikawa M, Higashi K (2011) Effect of Mg content on the minimum grain size of Al–Mg alloys obtained by friction stir processing. Scr Mater 64:355–358

    Article  Google Scholar 

  11. Bay B, Hansen N, Hughes DA, Kuhlmann-Wilsdorp D (1992) Evolution of fcc deformation structures in polyslip. Acta Metall Mater 40:205–219

    Article  Google Scholar 

  12. Hughes DA (1993) Microstructural evolution in a non-cell forming metal: Al–Mg. Acta Metall Mater 41:1421–1430

    Article  Google Scholar 

  13. Jin SB, Zhang K, Bjørge R, Tao NR, Marthinsen K, Lu K, Li YJ (2015) Formation of incoherent deformation twin boundaries in a coarse-grained Al-7 Mg alloy. Appl Phys Lett 107:091901

    Article  Google Scholar 

  14. Gray GT (1988) Deformation twinning in Al-4.8 wt% Mg. Acta Metall 36:1745–1754

    Article  Google Scholar 

  15. Shang SL, Wang WY, Zhou BC, Wang Y, Darling KA, Kecskes LJ, Mathaudhu SN, Liu ZK (2014) Generalized stacking fault energy, ideal strength and twinnability of dilute Mg-based alloys: a first-principles study of shear deformation. Acta Mater 67:168–180

    Article  Google Scholar 

  16. Zhang B, Wu L, Wan B, Zhang J, Li Z, Gou H (2015) Structural evolution, mechanical properties, and electronic structure of Al–Mg–Si compounds from first principles. J Mater Sci 50:6498–6509. doi:10.1007/s10853-015-9209-4

    Article  Google Scholar 

  17. Mohri T (2015) First-principles calculations of stability and phase equilibria in the Fe–Ni system. J Mater Sci 50:7705–7712. doi:10.1007/s10853-015-9337-x

    Article  Google Scholar 

  18. Vítek V (1968) Intrinsic stacking faults in body-centred cubic crystals. Philos Mag 18:773–786

    Article  Google Scholar 

  19. Siegel DJ (2005) Generalized stacking fault energies, ductilities, and twinnabilities of Ni and selected Ni alloys. Appl Phys Lett 87:121901–121901

    Article  Google Scholar 

  20. Swygenhoven HV, Derlet PM, Frøseth AG (2004) Stacking fault energies and slip in nanocrystalline metals. Nat Mater 3:399–403

    Article  Google Scholar 

  21. Hartford J, von Sydow B, Wahnstrm G, Lundqvist BI (1998) Peierls barriers and stresses for edge dislocations in Pd and Al calculated from first principles. Phys Rev B 58:2487–2496

    Article  Google Scholar 

  22. Lu G, Kioussis N, Bulatov VV, Kaxiras E (2000) Generalized-stacking-fault energy surface and dislocation properties of aluminum. Phys Rev B 62:3099–3108

    Article  Google Scholar 

  23. Ogata S, Li J, Yip S (2002) Ideal pure shear strength of aluminum and copper. Science 298:807–811

    Article  Google Scholar 

  24. Liu XY, Ercolessi F, Adams JB (2004) Aluminium interatomic potential from density functional theory calculations with improved stacking fault energy. Model Simul Mater Sci Eng 12:665–670

    Article  Google Scholar 

  25. Finkenstadt D, Johnson DD (2006) Solute/defect-mediated pathway for rapid nanoprecipitation in solid solutions: gamma surface analysis in fcc Al–Ag. Phys Rev B 73:024101

    Article  Google Scholar 

  26. Kibey S, Liu JB, Johnson DD, Sehitoglu H (2007) Predicting twinning stress in fcc metals: linking twin-energy pathways to twin nucleation. Acta Mater 55:6843–6851

    Article  Google Scholar 

  27. Qi Y, Mishra RK (2007) Ab initio study of the effect of solute atoms on the stacking fault energy in aluminum. Phys Rev B 75:224105

    Article  Google Scholar 

  28. Woodward C, Trinkle DR, Hector JLG, Olmsted DL (2008) Prediction of dislocation cores in aluminum from density functional theory. Phys Rev Lett 100:045507

    Article  Google Scholar 

  29. Jahnátek M, Hafner J, Krajčí M (2009) Shear deformation, ideal strength, and stacking fault formation of fcc metals: a density-functional study of Al and Cu. Phys Rev B 79:224103

    Article  Google Scholar 

  30. Wu X, Wang R, Wang S (2010) Generalized-stacking-fault energy and surface properties for HCP metals: a first-principles study. Appl Surf Sci 256:3409–3412

    Article  Google Scholar 

  31. Jin ZH, Dunham ST, Gleiter H, Hahn H, Gumbsch P (2011) A universal scaling of planar fault energy barriers in face-centered cubic metals. Scr Mater 64:605–608

    Article  Google Scholar 

  32. Branicio PS, Zhang JY, Srolovitz DJ (2013) Effect of strain on the stacking fault energy of copper: a first-principles study. Phys Rev B 88:064104

    Article  Google Scholar 

  33. Asadi E, Zaeem MA, Moitra A, Tschopp MA (2014) Effect of vacancy defects on generalized stacking fault energy of fcc metals. J Phys 26:115404

    Google Scholar 

  34. Bhogra M, Ramamurty U, Waghmare UV (2014) Temperature-dependent stability of stacking faults in Al, Cu and Ni: first-principles analysis. J Phys 26:385402

    Google Scholar 

  35. Wu XZ, Liu LL, Wang R, Liu Q (2014) The generalized planar fault energy, ductility, and twinnability of Al and Al–X (X = Sc, Y, Dy, Tb, Nd) at different temperatures: al and Al–X(X = Sc, Y, Dy, Tb, Nd) at different temperatures: a first-principles study. Chin Phys B 23:066104

    Article  Google Scholar 

  36. Hunter A, Beyerlein IJ (2015) Relationship between monolayer stacking faults and twins in nanocrystals. Acta Mater 88:207–217

    Article  Google Scholar 

  37. Kibey S, Liu JB, Johnson DD, Sehitoglu H (2006) Generalized planar fault energies and twinning in Cu–Al alloys. Appl Phys Lett 89:191911–191913

    Article  Google Scholar 

  38. Jo M, Koo YM, Lee BJ, Johansson B, Vitos L, Kwon SK (2014) Theory for plasticity of face-centered cubic metals. PNAS 111:6560–6565

    Article  Google Scholar 

  39. Kresse G, Furthmiiller J (1996) Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6:15–50

    Article  Google Scholar 

  40. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186

    Article  Google Scholar 

  41. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979

    Article  Google Scholar 

  42. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758–1775

    Article  Google Scholar 

  43. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  Google Scholar 

  44. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188–5192

    Article  Google Scholar 

  45. Blöchl PE, Jepsen O, Andersen OK (1994) Improved tetrahedron method for brillouin-zone integrations. Phys Rev B 49:16223–16233

    Article  Google Scholar 

  46. Zhao Q, Holmedal B, Li YJ, Sagvolden E, Løvvik O (2015) Multi-component solid solution and cluster hardening of Al–Mn–Si alloys. Mater Sci Eng, A 625:153–157

    Article  Google Scholar 

  47. Wang C, Wang H, Zhang H, Nan X, Xue E, Jiang Q (2013) First-principles study of generalized-stacking-fault (GSF) energy in Mg with Al and Zn alloyings. J Alloys Comp 575:423–433

    Article  Google Scholar 

  48. Shang SL, Zacherl CL, Fang HZ, Wang Y, Du Y, Liu ZK (2012) Effects of alloying element and temperature on the stacking fault energies of dilute Ni-base superalloys. J Phys 24:505403

    Google Scholar 

  49. Mehl MJ, Papaconstantopoulos DA, Kioussis N, Herbranson M (2000) Tight-binding study of stacking fault energies and the rice criterion of ductility in the fcc metals. Phys Rev B 61:4894–4897

    Article  Google Scholar 

  50. Cotterill RMJ, Doyama M (1966) Energy and atomic configuration of complete and dissociated dislocations. I. Edge dislocation in an fcc metal*. Phys Rev 145:465–478

    Article  Google Scholar 

  51. Rice JR (1992) Dislocation nucleation from a crack tip an analysis based on the peierls concept. J Mech Phys Solids 40:239–271

    Article  Google Scholar 

  52. Tadmor EB, Hai S (2003) A Peierls criterion for the onset of deformation twinning at a crack tip. J Mech Phys Solids 51:765–793

    Article  Google Scholar 

  53. Tadmor EB, Bernstein N (2004) A first-principles measure for the twinnability of FCC metals. J Mech Phys Solids 52:2507–2519

    Article  Google Scholar 

  54. Bernstein N, Tadmor EB (2004) Tight-binding calculations of stacking energies and twinnability in fcc metals. Phys Rev B 69:094116

    Article  Google Scholar 

  55. Soliman MS (1993) The high-temperature creep behaviour of an Al-1 wt% Cu solid-solution alloy. J Mater Sci 28:4483–4488. doi:10.1007/BF01154960

    Article  Google Scholar 

  56. Hammer B, Jacobsen KW, Milman V, Payne MC (1992) Stacking fault energy in aluminium. J Phys 4:10453–10460

    Google Scholar 

  57. Fan T, Wei L, Tang B, Peng L, Ding W (2014) Effect of temperature-induced solute distribution on stacking fault energy in Mg–X(X = Li, Cu, Zn, Al, Y and Zr) solid solution: a first-principles study. Philos Mag 94:1578–1587

    Article  Google Scholar 

  58. Dontsova E, Rottler J, Sinclair CW (2014) Solute-defect interactions in Al–Mg alloys from diffusive variational Gaussian calculations. Phys Rev B 90:174102

    Article  Google Scholar 

  59. Løvvik OM, Sagvolden E, Li YJ (2014) Prediction of solute diffusivity in Al assisted by first principles molecular dynamics. J Phys 26:025403

    Google Scholar 

  60. Kritzinger S, Dobson PS, Smallman RE (1967) The influence of a dilute magnesium addition on the growth ant shrinkage of dislocation loops in aluminium. Philos Mag 16:217–229

    Article  Google Scholar 

  61. Morris DG, Munoz-Morris MA (2002) Microstructure of severely deformed Al–3 Mg and its evolution during annealing. Acta Mater 50:4047–4060

    Article  Google Scholar 

  62. Murr LE (1975) Interfacial phenomena in metals and alloys. Addison Wesley, Reading

    Google Scholar 

  63. Smallman RE, Dobson PS (1970) Stacking fault energy measurement from diffusion. Metall Trans 1:2383–2389

    Google Scholar 

  64. Mills MJ, Stadelmann P (1989) A study of the structure of Lomer and 600 dislocations in Al using high-resolution transmission electron microscopy. Philos Mag A 60:355–384

    Article  Google Scholar 

  65. Dillamore IL, Smallman RE (1965) The stacking-fault energy of FCC metals. Philos Mag 12:191–193

    Article  Google Scholar 

  66. Brandl C, Derlet PM, Swygenhoven HV (2007) General-stacking-fault energies in highly strained metallic environments: Ab initio calculations. Phys Rev B 76:054124

    Article  Google Scholar 

  67. Zimmerman JA, Gao H, Abraham FF (2000) Generalized stacking fault energies for embedded atom FCC metals. Model Simul Mater Sci Eng 8:103–115

    Article  Google Scholar 

  68. Denteneer PJH, Sole JM (1991) Defect energetics in aluminium. J Phy 3:8777–8792

    Google Scholar 

  69. Kioussis N, Herbranson M, Collins E, Eberhart ME (2002) Topology of electronic charge density and energetics of planar faults in fcc metals. Phys Rev Lett 88:125501

    Article  Google Scholar 

  70. Wright AF, Daw MS, Fong CY (1992) Theoretical investigation of (111) stacking faults in aluminium. Philos Mag A 66:387–404

    Article  Google Scholar 

  71. Simon JP (1979) A review of twin and stacking fault energies in Al, Mg and Be. J Phys F: Metal Phys 9:425–430

    Article  Google Scholar 

  72. Devlin JF, Bollmann W (1975) A rapid calculational technique for the stacking-fault problem. Phys Status Solidi A 27:K57–K60

    Article  Google Scholar 

  73. Jin Q, Wang P, Ding D (1993) ASW first principles calculation of the intrinsic and extrinsic stacking fault energies in aluminium. Phys Lett A 174:437–440

    Article  Google Scholar 

  74. Wei XM, Zhang JM, Xu KW, Ji V (2008) Surface effect on the GSF energy of Al. Appl Surf Sci 254:6683–6686

    Article  Google Scholar 

  75. Mishin Y, Farkas D, Mehl MJ, Papaconstantopoulos DA (1999) Interatomic potentials for monoatomic metals from experimental data and ab initio calculations. Phys Rev B 59:3393–3407

    Article  Google Scholar 

  76. Crampin S, Hampel K, Vvedensky DD, MacLaren JM (1990) The calculation of stacking fault energies in close-packed metals. J Mater Res 5:2107–2119

    Article  Google Scholar 

  77. Wilkes P, Sargent CM (1972) A calculation of the stacking-fault and twin energies for aluminium. Met Sci J 6:216–219

    Article  Google Scholar 

  78. Fullman RL (1951) Interfacial free energy of coherent twin boundaries in copper. J Appl Phys 22:448–455

    Article  Google Scholar 

  79. Howie A, Swann PR (1961) Direct measurements of stacking-fault energies from observations of dislocation nodes. Philos Mag 6:1215–1226

    Article  Google Scholar 

  80. Peissker VE (1965) Critical stress for cross slip and stacking fault energies of copper base mixed crystals. Acta Metall 13:419–431

    Article  Google Scholar 

  81. Stobbs WM, Sworn CH (1971) The weak beam technique as applied to the determination of the stacking-fault energy of copper. Philos Mag 24:1365–1381

    Article  Google Scholar 

  82. Carter CB, Ray ILF (1977) On the stacking-fault energies of copper alloys. Philos Mag 35:189–200

    Article  Google Scholar 

  83. Thornton PR, Mitchell TE (1962) Deformation twinning in alloys at low temperatures. Philos Mag 7:361–375

    Article  Google Scholar 

  84. Schweizer S, Elsasser C, Hummler K, Fahnle M (1992) Ab initio calculation of stacking-fault energies in noble metals. Phys Rev B 46:14270–14273

    Article  Google Scholar 

  85. Wang LG, Šob M (1999) Structural stability of higher-energy phases and its relation to the atomic configurations of extended defects: the example of Cu. Phys Rev B 60:844–860

    Article  Google Scholar 

  86. Heino P (1999) Stacking-fault energy of copper from molecular-dynamics simulations. Phys Rev B 60:14625–14631

    Article  Google Scholar 

  87. Rosengaard NM, Skriver HL (1993) Calculated stacking-fault energies of elemental metals. Phys Rev B 47:12865–12873

    Article  Google Scholar 

Download references

Acknowledgements

This work is financially supported under the FRINATEK project ‘BENTMAT’ (project number 222173) from Research Council of Norway. Computation time from the NOTUR consortium is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanjun Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, D., Løvvik, O.M., Marthinsen, K. et al. Impurity effect of Mg on the generalized planar fault energy of Al. J Mater Sci 51, 6552–6568 (2016). https://doi.org/10.1007/s10853-016-9834-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-9834-6

Keywords

Navigation