Skip to main content

Advertisement

Log in

Molecular Dynamics Study of Solute Pinning Effects on Grain Boundary Migration in the Aluminum Magnesium Alloy System

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Molecular dynamics simulation, combined with the artificial driving force technique, has been used to study solute interactions with migrating grain boundaries, especially low angle boundaries, in the Al-Mg alloy system. The motion of [112] symmetric tilt boundaries was investigated employing two different approaches at 300 K (27 °C). In the first approach, where solute atoms are segregated and surround the intrinsic dislocations at the grain boundary, a strong solute pinning effect was observed at all misorientations and at different Mg concentrations. A minimum driving force is found to be required for overcoming the barrier produced by the segregated solute at the boundary and a high magnitude of threshold force was observed in all alloys examined. In the alternative approach, where solutes are distributed in a confined region away from the grain boundary, we find that the velocity–driving force behavior in the high driving pressure regime depends on solute concentration, consistent with a recent solute pinning model by Hersent et al. The distributed solute approach provided less pining effect on low angle grain boundary migration compared to that of segregated solutes. The relationship between the restraining force and the solute concentration was computed and, when fit to the Hersent et al. analysis, the solute pinning constant was found to be α = 35 ± 7 MPa for a 7.785 deg boundary in the Al-Mg binary system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K. Lücke and K. Detert: Acta Metall., 1957, vol. 5, pp. 628–37.

    Article  Google Scholar 

  2. J.W. Rutter and K.T. Aust: Acta Metall., 1958, vol. 6, pp. 375–77.

    Article  Google Scholar 

  3. K.T. Aust and J.W. Rutter: Trans. Met. Soc. AIME., 1959, vol. 215, pp. 820–30.

    Google Scholar 

  4. J.W. Rutter and K.T. Aust: Trans. Met. Soc. AIME, 1960, vol. 218, p. 682–88.

    Google Scholar 

  5. K. Lücke and H.P. Stüwe: Recovery and Recrystallization of Metals, Interscience, New York, 1963, p. 171–210.

    Google Scholar 

  6. K. Lücke and H.P. Stüwe: Acta Metall., 1971, vol. 19, p. 1087–99.

    Article  Google Scholar 

  7. J.W. Cahn: Acta Metall., 1962, vol. 10, p. 789–98.

    Article  Google Scholar 

  8. M. Hillert and B. Sundman: Acta Metall., 1976, vol. 24, p. 731–43.

    Article  Google Scholar 

  9. I. Weiss and J.J. Jonas: Metall. Trans. A, 1979, vol. 10A, p. 831–40.

    Article  Google Scholar 

  10. M.G. Akben, B. Bacroix, and J.J. Joans: Acta Metall., 1983, vol. 31, pp. 161–74.

    Article  Google Scholar 

  11. S.F. Medina and J.E. Mancilla: ISIJ Int., 1996, vol. 36, p. 1063–69.

    Article  Google Scholar 

  12. H.S. Zurob, Y.J.M. Bréchet, and G.R. Purdy: Acta Mater., 2001, vol. 49, pp. 4183–90.

    Article  Google Scholar 

  13. C.R. Hutchinson, H.S. Zurob, C.W. Sinclair, and Y.J.M. Bréchet: Scripta Mater., 2008, vol. 59, pp. 635–37.

    Article  Google Scholar 

  14. M. Hillert: Acta Mater., 2004, vol. 52, pp. 5289–93.

    Article  Google Scholar 

  15. M. Hillert and B. Sundman: Acta Metall., 1977, vol. 25, p. 11–18.

    Article  Google Scholar 

  16. J. Ågren: Acta Metall., 1989, vol. 37, pp. 181–89.

    Article  Google Scholar 

  17. Y.J.M. Bréchet and G.R. Purdy: Scripta Metall. Mater., 1990, vol. 24, p. 1831–35.

    Article  Google Scholar 

  18. Y.J.M. Bréchet and G.R. Purdy: Scripta Metall. Mater., 1992, vol. 27, pp. 1753–57.

    Article  Google Scholar 

  19. G.R. Purdy and Y.J.M. Bréchet: Acta Metall. Mater., 1995, vol. 43, pp. 3763–74.

    Article  Google Scholar 

  20. I. Andersen and Ø. Grong: Acta Metall. Mater., 1995, vol. 43, pp. 2673–88.

    Article  Google Scholar 

  21. M. Enomoto: Acta Mater., 1999, vol. 47, pp. 3533–40.

    Article  Google Scholar 

  22. M. Hillert, J. Odqvist, and J. Ågren: Scripta Mater., 2001, vol. 45, pp. 221–27.

    Article  Google Scholar 

  23. L.M. Fu, H.R. Wang, W. Wang and A.D. Shan: Mater. Sci. Technol., 2011, vol. 27, pp. 996–1001.

    Article  Google Scholar 

  24. Y.J.M. Bréchet and G.R. Purdy: Acta Mater., 2003, vol. 51, pp. 5587–92.

    Article  Google Scholar 

  25. C.W. Sinclair, C.R. Hutchinson, and Y.J.M. Bréchet: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 821–30.

    Article  Google Scholar 

  26. L. Lissel, G. Engberg, and U. Borggren: Proceedings of 3rd International Conference on TMP, Associazione Italiana di Metallurgica/AIM, Padua, 2008.

  27. M.I. Mendelev and D.J. Srolovitz: Acta Mater., 2001, vol. 49, pp. 589–97.

    Article  Google Scholar 

  28. M.I. Mendelev and D.J. Srolovitz: Phil. Mag., 2001, vol. 81, pp. 2243–69.

    Article  Google Scholar 

  29. D.A. Molodov, U. Czubayko, G. Gottstein, and L.S. Shvindlerman: Acta Mater., 1998, vol. 46, pp. 553–64.

    Article  Google Scholar 

  30. G. Gottstein, D.A. Molodov, U. Czubayko, and L.S. Shvindlerman: J. Phys. IV, 1995, vol. 5, p. C3(89)–C3(106).

    Google Scholar 

  31. E.S. Machlin: Trans. AIME, 1962, vol. 224, pp. 1153–67.

    Google Scholar 

  32. E. Hersent, K. Marthinsen, and E. Nes: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 3364–75.

    Article  Google Scholar 

  33. R. Sandström: Acta Metall., 1977, vol. 25, p. 905–11.

    Article  Google Scholar 

  34. N.F. Fiore and C.L. Bauer: Prog. Mater. Sci., 1968, vol. 13, p. 85–134.

    Article  Google Scholar 

  35. C.K. Syn, A. Ahmadieh, and J.W. Morris, Jr: Scripta Metall., 1975, vol. 9, pp. 1255–58.

    Article  Google Scholar 

  36. D.W. Bainbridge, H. L. Choh, and E.H. Edwards: Acta Metall., 1954, vol. 2, pp. 322–33.

    Article  Google Scholar 

  37. P. Cha, S.G. Kim, D. Yeon, and J. Yoon: Acta Mater., 2002, vol. 50, pp. 3817–29.

    Article  Google Scholar 

  38. N.A. Ahmad, A.A. Wheeler, W.J. Boettinger, and G.B. McFadden: Phys. Rev. E, 1998, vol. 58, pp. 3436–50.

    Article  Google Scholar 

  39. I. Loginova, J. Odqvist, G. Amberg, and J. Ågren: Acta Mater., 2003, vol. 51, pp. 1327–39.

    Article  Google Scholar 

  40. K.R. Elder, M. Katakowski, M. Haataja, and M. Grant: Phys. Rev. Lett., 2002, vol. 88, pp. 245701(1)–245701(4).

    Article  Google Scholar 

  41. K.R. Elder and M. Grant: Phys. Rev. E, 2004, vol. 70, pp. 051605(1) – 051605(18).

    Article  Google Scholar 

  42. M. Greenwood, C.W. Sinclair, and M. Milizer: Acta Mater., 2012, vol. 60, pp. 5752–61.

    Article  Google Scholar 

  43. B. Schönfelder, D. Wolf, S.R. Phillpot, and M. Furtkamp: Interface Sci., 1997, vol. 5, pp. 245–62.

    Article  Google Scholar 

  44. H. Zhang, M.I. Mendelev, and D.J. Srolovitz: Acta Mater., 2004, vol. 52, pp. 2569–76.

    Article  Google Scholar 

  45. B. Schönfelder, G. Gottstein, and L.S. Shvindlerman: Acta Mater., 2005, vol. 53, pp. 1597–609.

    Article  Google Scholar 

  46. H. Zhnag, M. Upmanyu, and D.J. Srolovitz: Acta Mater., 2005, vol. 53, pp. 79–86.

    Article  Google Scholar 

  47. M. Upmanyu, D.J. Srolovitz, L.S. Shvindlerman, and G. Gottstein: Acta Mater., 1999, vol. 47, pp. 3901–14.

    Article  Google Scholar 

  48. K.G.F. Janssens, D.L. Olmsted, E.A. Holm, S.M. Foiles, S.J. Plimpton, and P.M. Derlet: Nat. Matls., 2006, vol. 5, pp. 124–27.

    Article  Google Scholar 

  49. D.L. Olmsted, S.M. Foiles, and E.A. Holm: Acta Mater., 2009, vol. 57, pp. 3694–03.

    Article  Google Scholar 

  50. D.L. Olmsted, E.A. Holm, and S.M. Foiles: Acta Mater., 2009, vol. 57, pp. 3704–13.

    Article  Google Scholar 

  51. Z.T. Trautt, M. Upmanyu, and A. Karma: Science, 2006, vol. 314, pp. 632–35.

    Article  Google Scholar 

  52. J.J. Hoyt, Z.T. Trautt, and M. Upmanyu: Math. Comput. Simul., 2010, vol. 80, pp. 1382–92.

    Article  Google Scholar 

  53. S.M. Foiles and J.J. Hoyt: Acta Mater., 2006, vol. 54, pp. 3351–57.

    Article  Google Scholar 

  54. J.J. Hoyt: Modelling Simul. Mater. Sci. Eng., 2014, vol. 22(3), pp. 033001(1)–033001(17).

    Article  Google Scholar 

  55. Y. Yang, H. Humadi, D. Buta, B.B. laird, D.Y. Sun, J.J. Hoyt, and M. Asta: Phys. Rev. Lett., 2011, vol. 107, pp. 025505(1)–025505(4).

    Google Scholar 

  56. M. Winning, A.D. Rollett, G. Gottstein, D.J. Srolovitz, A. Lim, and L.S. Shvindlerman: Phil. Mag., 2010, vol. 90, pp. 3107–28.

    Article  Google Scholar 

  57. I. Toda, P.D. Bristowe, and C. Capdevila: Acta Mater., 2012, vol. 60, pp. 1116–28.

    Article  Google Scholar 

  58. M.J. Rahman, H.S. Zurob, and J.J. Hoyt: Acta Mater., 2014, vol. 74, p. 39–48.

    Article  Google Scholar 

  59. A. Karma, Z.T. Trautt, and Y. Mishin: Phys. Rev. Lett., 2012, vol. 109, pp. 095501(1)–095501(5).

    Article  Google Scholar 

  60. J.W. Cahn and J.E. Taylor: Acta Mater., 2004, vol. 52, pp. 4887–98.

    Article  Google Scholar 

  61. M.I. Mendelev, M. Asta, M.J. Rahman, and J.J. Hoyt: Phil. Mag., 2009, vol. 89, pp. 3269–85.

    Article  Google Scholar 

  62. J.W. Cahn, Y. Mishin, and A. Suzuki: Acta Mater., 2006, vol. 54, pp. 4953–75.

    Article  Google Scholar 

  63. D. Frenkel: in Advanced Monte Carlo Techniques NATO ASI Series C, vol. 397: M.P. Allen and D.J. Tildesley, eds., Kluwer, Dordretch, 1993, pp. 93–152.

  64. D. Frenkel and B. Smit: Understanding Molecular Simulation, Academic, New York, 1996.

    Google Scholar 

  65. S.J. Plimpton: J. Comp. Phys., 1995, vol. 117, pp. 1–19.

    Article  Google Scholar 

  66. http://lammps.sandia.gov/.

  67. C. Deng and C.A. Schuh: Phys. Rev. B, 2011, vol. 84, pp. 214102(1)–214102(10).

    Google Scholar 

  68. D.L. Olmsted, L.G. Hector, Jr, W.A. Curtin, and R.J. Clifton: Modelling Simul. Mater. Sci. Eng., 2005, vol. 13, pp. 371–388.

    Article  Google Scholar 

  69. D.L. Olmsted, L.G. Hector, Jr, and W.A. Curtin: J. Mech. Phys. Solids, 2006, vol. 54, pp. 1763–88.

    Article  Google Scholar 

  70. J. G. Kirkwood, J. Chem. Phys., 1935, vol. 3, p. 300–13.

    Article  Google Scholar 

Download references

Acknowledgments

The financial support of this research work was covered by a Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant. The high performance computing resources for this study are provided by Shared Hierarchical Academic Research Computing Network (SHARCNET).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Jahidur Rahman.

Additional information

Manuscript submitted September 22, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, M.J., Zurob, H.S. & Hoyt, J.J. Molecular Dynamics Study of Solute Pinning Effects on Grain Boundary Migration in the Aluminum Magnesium Alloy System. Metall Mater Trans A 47, 1889–1897 (2016). https://doi.org/10.1007/s11661-016-3322-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3322-0

Keywords

Navigation