Skip to main content
Log in

Nonlinear Stability of MHD Contact Discontinuities with Surface Tension

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We consider the motion of two inviscid, compressible, and electrically conducting fluids separated by an interface across which there is no fluid flow in the presence of surface tension. The magnetic field is supposed to be nowhere tangential to the interface. This leads to the characteristic free boundary problem for contact discontinuities with surface tension in three-dimensional ideal compressible magnetohydrodynamics (MHD). We prove the nonlinear structural stability of MHD contact discontinuities with surface tension in Sobolev spaces by a modified Nash–Moser iteration scheme. The main ingredient of our proof is deriving the resolution and tame estimate of the linearized problem in usual Sobolev spaces of sufficiently large regularity. In particular, for solving the linearized problem, we introduce a suitable regularization that preserves the transport-type structure for the linearized entropy and divergence of the magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alinhac, S.: Existence d’ondes de raréfaction pour des systèmes quasi-linéaires hyperboliques multidimensionnels. Commun. Partial Differ. Eqs. 14(2), 173–230, 1989. https://doi.org/10.1080/03605308908820595.

    Article  MATH  Google Scholar 

  2. Alinhac, S., Gérard, P.: Pseudo-differential Operators and the Nash–Moser Theorem. American Mathematical Society, Providence (2007). https://doi.org/10.1090/gsm/082.

  3. Ambrose, D.M., Masmoudi, N.: Well-posedness of 3D vortex sheets with surface tension. Commun. Math. Sci. 5(2), 391–430, 2007. https://doi.org/10.4310/CMS.2007.v5.n2.a9.

    Article  MathSciNet  MATH  Google Scholar 

  4. Chandrasekhar, S.: Hydrodynamic and Hydromagnetic Stability. Clarendon Press, Oxford (1961).

  5. Chazarain, J., Piriou, A.: Introduction to the Theory of Linear Partial Differential Equations. North-Holland Publishing Co., Amsterdam, 1982. https://www.sciencedirect.com/bookseries/studies-in-mathematics-and-its-applications/vol/14/suppl/C.

  6. Chen, G.-Q., Secchi, P., Wang, T.: Nonlinear stability of relativistic vortex sheets in three-dimensional Minkowski spacetime. Arch. Ration. Mech. Anal. 232(2), 591–695, 2019. https://doi.org/10.1007/s00205-018-1330-5.

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, G.-Q., Secchi, P., Wang, T.: Stability of multidimensional thermoelastic contact discontinuities. Arch. Ration. Mech. Anal. 237(3), 1271–1323, 2020. https://doi.org/10.1007/s00205-020-01531-5.

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, G.-Q., Wang, Y.-G.: Existence and stability of compressible current-vortex sheets in three-dimensional magnetohydrodynamics. Arch. Ration. Mech. Anal. 187(3), 369–408, 2008. https://doi.org/10.1007/s00205-007-0070-8.

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, G.-Q., Wang, Y.-G.: Characteristic discontinuities and free boundary problems for hyperbolic conservation laws. In: Holden, H., Karlsen, K.H. (eds.) Nonlinear Partial Differential Equations, pp. 53–81. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-25361-4_4.

  10. Chen, S.: Study of multidimensional systems of conservation laws: problems, difficulties and progress. In: Bhatia, R., Pal, A., Rangarajan, G., Srinivas, V., Vanninathan, M. (eds.) Proceedings of the International Congress of Mathematicians, Vol. III, pp. 1884–1900. Hindustan Book Agency, New Delhi (2010). https://doi.org/10.1142/9789814324359_0126.

  11. Cheng, C.-H., Coutand, D., Shkoller, S.: On the motion of vortex sheets with surface tension in three-dimensional Euler equations with vorticity. Commun. Pure Appl. Math. 61(12), 1715–1752, 2008. https://doi.org/10.1002/cpa.20240.

    Article  MathSciNet  MATH  Google Scholar 

  12. Coulombel, J.-F., Secchi, P.: Nonlinear compressible vortex sheets in two space dimensions. Ann. Sci. Éc. Norm. Supér. (4) 41(1), 85–139, 2008. https://doi.org/10.24033/asens.2064.

    Article  MathSciNet  MATH  Google Scholar 

  13. Delhaye, J.M.: Jump conditions and entropy sources in two-phase systems. Local instant formulation. Int. J. Multiphase Flow 1(3), 395–409, 1974. https://doi.org/10.1016/0301-9322(74)90012-3.

    Article  MATH  Google Scholar 

  14. Fejer, J.A., Miles, J.W.: On the stability of a plane vortex sheet with respect to three-dimensional disturbances. J. Fluid Mech. 15, 335–336, 1963. https://doi.org/10.1017/S002211206300029X.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Hörmander, L.: The boundary problems of physical geodesy. Arch. Ration. Mech. Anal. 62(1), 1–52, 1976. https://doi.org/10.1007/BF00251855.

    Article  MathSciNet  MATH  Google Scholar 

  16. Ishii, M., Hibiki, T.: Thermo-Fluid Dynamics of Two-Phase Flow, 2nd edition. Springer, New York, 2011. https://doi.org/10.1007/978-1-4419-7985-8.

  17. Lautrup, B.: Physics of Continuous Matter. Exotic and Everyday Phenomena in the Macroscopic World, 2nd edition. CRC Press, Boca Raton, 2011. https://doi.org/10.1201/9781439894200.

  18. Landau, L.D., Lifshitz, E.M.: Electrodynamics of Continuous Media. 2nd edition. Pergamon Press, Oxford, 1984. https://www.sciencedirect.com/book/9780080302751/electrodynamics-of-continuous-media.

  19. Lions, J.-L., Magenes, E.: Non-homogeneous Boundary Value Problems and Applications, Vol. II. Springer, New York, 1972. https://doi.org/10.1007/978-3-642-65217-2.

  20. Métivier, G.: Stability of multidimensional shocks. In: Freistühler, H., Szepessy, A. (eds.) Advances in the Theory of Shock Waves, pp. 25–103. Birkhäuser, Boston (2001). https://doi.org/10.1007/978-1-4612-0193-9_2.

  21. Mishkov, R.L.: Generalization of the formula of Faa di Bruno for a composite function with a vector argument. Int. J. Math. Math. Sci. 24, 481–491, 2000. https://doi.org/10.1155/S0161171200002970.

    Article  MathSciNet  MATH  Google Scholar 

  22. Morando, A., Trakhinin, Y., Trebeschi, P.: Well-posedness of the linearized problem for MHD contact discontinuities. J. Differ. Eqs. 258(7), 2531–2571, 2015. https://doi.org/10.1016/j.jde.2014.12.018.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Morando, A., Trakhinin, Y., Trebeschi, P.: Local existence of MHD contact discontinuities. Arch. Ration. Mech. Anal. 228(2), 691–742, 2018. https://doi.org/10.1007/s00205-017-1203-3.

    Article  MathSciNet  MATH  Google Scholar 

  24. Rauch, J.: Symmetric positive systems with boundary characteristic of constant multiplicity. Trans. Am. Math. Soc. 291(1), 167–187, 1985. https://doi.org/10.1090/S0002-9947-1985-0797053-4.

    Article  MathSciNet  MATH  Google Scholar 

  25. Samulyak, R., Du, J., Glimm, J., Xu, Z.: A numerical algorithm for MHD of free surface flows at low magnetic Reynolds numbers. J. Comput. Phys. 226, 1532–1549, 2007. https://doi.org/10.1016/j.jcp.2007.06.005.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Secchi, P.: Well-posedness of characteristic symmetric hyperbolic systems. Arch. Ration. Mech. Anal. 134, 155–197, 1996. https://doi.org/10.1007/BF00379552.

    Article  MathSciNet  MATH  Google Scholar 

  27. Secchi, P.: On the Nash-Moser iteration technique. In: Amann, H., Giga, Y., Kozono, H., Okamoto, H., Yamazaki, M. (eds.) Recent Developments of Mathematical Fluid Mechanics, pp. 443–457. Birkhäuser, Basel (2016). https://doi.org/10.1007/978-3-0348-0939-9_23.

  28. Secchi, P., Trakhinin, Y.: Well-posedness of the plasma-vacuum interface problem. Nonlinearity 27(1), 105–169, 2014. https://doi.org/10.1088/0951-7715/27/1/105.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Shatah, J., Zeng, C.: A priori estimates for fluid interface problems. Commun. Pure Appl. Math. 61(6), 848–876, 2008. https://doi.org/10.1002/cpa.20241.

    Article  MathSciNet  MATH  Google Scholar 

  30. Shatah, J., Zeng, C.: Local well-posedness for fluid interface problems. Arch. Ration. Mech. Anal. 199(2), 653–705, 2011. https://doi.org/10.1007/s00205-010-0335-5.

    Article  MathSciNet  MATH  Google Scholar 

  31. Stevens, B.: Short-time structural stability of compressible vortex sheets with surface tension. Arch. Ration. Mech. Anal. 222(2), 603–730, 2016. https://doi.org/10.1007/s00205-016-1009-8.

    Article  MathSciNet  MATH  Google Scholar 

  32. Syrovatskiĭ, S.I.: Instability of tangential discontinuities in a compressible medium (in Russian) Akad. Nauk SSSR. Žurnal Eksper. Teoret. Fiz. 27, 121–123, 1954.

  33. Trakhinin, Y.: Existence of compressible current-vortex sheets: variable coefficients linear analysis. Arch. Ration. Mech. Anal. 177(3), 331–366, 2005. https://doi.org/10.1007/s00205-005-0364-7.

    Article  MathSciNet  MATH  Google Scholar 

  34. Trakhinin, Y.: The existence of current-vortex sheets in ideal compressible magnetohydrodynamics. Arch. Ration. Mech. Anal. 191(2), 245–310, 2009. https://doi.org/10.1007/s00205-008-0124-6.

    Article  MathSciNet  MATH  Google Scholar 

  35. Trakhinin, Y.: Local existence for the free boundary problem for nonrelativistic and relativistic compressible Euler equations with a vacuum boundary condition. Commun. Pure Appl. Math. 62(11), 1551–1594, 2009. https://doi.org/10.1002/cpa.20282.

    Article  MathSciNet  MATH  Google Scholar 

  36. Trakhinin, Y., Wang, T.: Well-posedness of free boundary problem in non-relativistic and relativistic ideal compressible magnetohydrodynamics. Arch. Ration. Mech. Anal. 239(2), 1131–1176, 2021. https://doi.org/10.1007/s00205-020-01592-6.

    Article  MathSciNet  MATH  Google Scholar 

  37. Trakhinin, Y., Wang, T.: Well-posedness for the free-boundary ideal compressible magnetohydrodynamic equations with surface tension. Math. Ann., 2021. https://doi.org/10.1007/s00208-021-02180-z.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referees for comments and suggestions that improved the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by N. Masmoudi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research of Yuri Trakhinin was supported by the Russian Science Foundation under Grant No. 20-11-20036. The research of Tao Wang was supported by the National Natural Science Foundation of China under Grants 11971359 and 11731008.

A Jump Conditions with or without Surface Tension

A Jump Conditions with or without Surface Tension

We assume that the surface \(\Sigma (t)\) is smooth with a well-defined unit normal \(\varvec{n}(t,x)\) and moves with the normal speed \(\mathcal {V}(t,x)\) at point \(x\in \Sigma (t)\) and time \(t\ge 0\). Let \(\Omega ^+(t)\) and \(\Omega ^-(t)\) denote the space domains occupied by the two conducting fluids at time t, respectively. Without loss of generality we assume that the unit normal \(\varvec{n}\) points into \(\Omega ^+(t)\). Piecewise smooth weak solutions of the compressible MHD equations (1.1)–(1.2) must satisfy the following MHD Rankine–Hugoniot conditions on the surface of discontinuity \(\Sigma (t)\) (see LandauLifshitz [18, §70]):

$$\begin{aligned}&-\mathcal {V}[\rho ]+\varvec{n}\cdot [\rho v]=0, \end{aligned}$$
(A.1a)
$$\begin{aligned}&-\mathcal {V}[\rho v]+\varvec{n}\cdot [\rho v\otimes v-H\otimes H ]+\varvec{n}[q]=0, \end{aligned}$$
(A.1b)
$$\begin{aligned}&-\mathcal {V}[H]-\varvec{n}\times [ v\times H]=0, \end{aligned}$$
(A.1c)
$$\begin{aligned}&-\mathcal {V}\big [\rho E+\tfrac{1}{2}|H|^2\big ]+\varvec{n}\cdot [ v(\rho E+p)+ H\times (v\times H)]=0, \end{aligned}$$
(A.1d)
$$\begin{aligned}&\,\varvec{n}\cdot [H]=0. \end{aligned}$$
(A.1e)

Here \([g]:=g^+-g^-\) denotes the jump in the quantity g across \(\Sigma (t)\) with

$$\begin{aligned} g^{\pm }(t,x):=\lim _{\epsilon \rightarrow 0^+}g(t,x\pm \epsilon \varvec{n}(t,x)) \quad \text {for }x\in \Sigma (t). \end{aligned}$$

The condition (A.1a) means that the mass transfer flux \(\mathfrak {j}:=\rho (v\cdot \varvec{n}-\mathcal {V})\) is continuous through \(\Sigma (t)\). We can rewrite (A.1) in terms of \(\mathfrak {j}\) as

$$\begin{aligned} \left\{ \begin{aligned}&{[}{\mathfrak {j}}{]}=0,\quad \mathfrak {j} [v_{\varvec{n}}]+[q]=0,\quad \mathfrak {j} [v_{\tau }]=H_{\varvec{n}}[H_{\tau }],\quad [H_{\varvec{n}}]=0,\\&\mathfrak {j} \left[ \tfrac{1}{\rho }H_{\tau }\right] =H_{\varvec{n}}[v_{\tau }],\quad \mathfrak {j}\left[ E+\tfrac{1}{2\rho }|H|^2\right] +[qv_{\varvec{n}}-(H\cdot v)H_{\varvec{n}}]=0, \end{aligned}\right. \end{aligned}$$
(A.2)

where \(v_{\varvec{n}}:=v\cdot \varvec{n}\) (resp. \(H_{\varvec{n}}:=H\cdot \varvec{n}\)) is the normal component of v (resp. H) and \(v_{\tau }\) (resp. \(H_{\tau }\)) is the tangential part of v (resp. H). If there is no flow across the discontinuity, that is, \(\mathfrak {j}=0\) on \(\Sigma (t)\), then compressible MHD permits two distinct types of characteristic discontinuities [18, §71]: tangential discontinuities (\(H_{\varvec{n}}|_{\Sigma (t)}= 0\)) and contact discontinuities (\(H_{\varvec{n}}|_{\Sigma (t)}\ne 0\)). For tangential discontinuities (or called current-vortex sheets), the jump conditions (A.2) become

$$\begin{aligned} H^{\pm }\cdot {\varvec{n}}=0,\quad [q]=0,\quad \mathcal {V}=v^+\cdot {\varvec{n}}=v ^-\cdot {\varvec{n}}\quad \text {on }\Sigma (t). \end{aligned}$$
(A.3)

Moreover, from (A.2), we obtain the following boundary conditions for MHD contact discontinuities:

$$\begin{aligned} H^{\pm }\cdot {\varvec{n}}\ne 0,\quad [p]=0,\quad [v]=[H]=0,\quad \mathcal {V}=v^+\cdot {\varvec{n}} \quad \text {on }\Sigma (t). \end{aligned}$$
(A.4)

With surface tension present on the interface \(\Sigma (t)\), we must take into account the corresponding surface force produced, so that the conditions (A.1b) and (A.1d) have to be modified respectively into (see Delhaye [13] or IshiiHibiki [16, Chapter 2])

$$\begin{aligned}&-\mathcal {V}[\rho v]+\varvec{n}\cdot [\rho v\otimes v-H\otimes H ]+\varvec{n}[q]=\mathfrak {s}\mathcal {H}\varvec{n},\\&-\mathcal {V}\big [\rho E+\tfrac{1}{2}|H|^2\big ]+\varvec{n}\cdot [ v(\rho E+p)+ H\times (v\times H)]=\mathfrak {s}\mathcal {H}\mathcal {V}, \end{aligned}$$

where \(\mathfrak {s}>0\) denotes the constant coefficient of surface tension and \(\mathcal {H}\) twice the mean curvature of \(\Sigma (t)\). Hence, for any interface with surface tension, the boundary conditions (A.2) should be replaced by

$$\begin{aligned} \left\{ \begin{aligned}&{[}{\mathfrak {j}}{]}=0,\quad \mathfrak {j} [v_{\varvec{n}}]+[q]=\mathfrak {s}\mathcal {H},\quad \mathfrak {j} [v_{\tau }]=H_{\varvec{n}}[H_{\tau }],\quad [H_{\varvec{n}}]=0,\\&\mathfrak {j}\left[ \tfrac{1}{\rho }H_{\tau }\right] =H_{\varvec{n}}[v_{\tau }],\quad \mathfrak {j}\left[ E+\tfrac{1}{2\rho }|H|^2\right] +[qv_{\varvec{n}}-(H\cdot v)H_{\varvec{n}}]=\mathfrak {s}\mathcal {H}\mathcal {V}. \end{aligned}\right. \end{aligned}$$

Considering \(\mathfrak {j}=0\) on \(\Sigma (t)\), we get two different possibilities of interfaces, viz.

  1. (a)

    current-vortex sheets with surface tension, for which the boundary conditions read as

    $$\begin{aligned} H^{\pm }\cdot {\varvec{n}}=0,\quad [q]=\mathfrak {s}\mathcal {H},\quad \mathcal {V}=v^+\cdot {\varvec{n}}=v ^-\cdot {\varvec{n}}\quad \text {on }\Sigma (t). \end{aligned}$$
    (A.5)
  2. (b)

    MHD contact discontinuities with surface tension, for which the boundary conditions read

    $$\begin{aligned} H^{\pm }\cdot {\varvec{n}}\ne 0,\quad [p]=\mathfrak {s}\mathcal {H},\quad [v]=[H]=0,\quad \mathcal {V}=v^+\cdot {\varvec{n}} \quad \text {on }\Sigma (t). \end{aligned}$$
    (A.6)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trakhinin, Y., Wang, T. Nonlinear Stability of MHD Contact Discontinuities with Surface Tension. Arch Rational Mech Anal 243, 1091–1149 (2022). https://doi.org/10.1007/s00205-021-01740-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-021-01740-6

Navigation