Skip to main content
Log in

Local Well-Posedness for Fluid Interface Problems

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

In this paper, we prove the local well-posedness of the fluid interface problem with surface tension where the velocity fields are not assumed to be irrotational and the fluid domains are not assumed to be simply connected. Viewed as a Lagrangian system with the configuration space being an infinite dimensional manifold possessing many symmetries, this problem is reduced to the evolution of the interface, determined by its mean curvature, and the evolution of the rotational part of the velocity fields, determined by the symmetries. This framework also applies to several other fluid surface problems which are outlined in the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrose D.M.: Well-posedness of vortex sheets with surface tension. SIAM J. Math. Anal. 35(1), 211–244 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ambrose D.M., Masmoudi N.: The zero surface tension limit of two-dimensional water waves. Commun. Pure Appl. Math. 58(10), 1287–1315 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Ambrose D.M., Masmoudi N.: Well-posedness of 3D vortex sheets with surface tension. Commun. Math. Sci. 5(2), 391–430 (2007)

    MATH  MathSciNet  Google Scholar 

  4. Arnold V.I.: Sur la gèométrie diffèrentielle des groupes de Lie de dimension infinie et ses applications à l’hydrodynamique des fluides parfaits. Ann. Inst. Fourier 16, 316–361 (1966)

    Article  Google Scholar 

  5. Beale J.T., Hou T.Y., Lowengrub J.S.: Growth rates for the linearized motion of fluid interfaces away from equilibrium. Commun. Pure Appl. Math. 46(9), 1269–1301 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  6. Beyer, K., Günther, M.: On the Cauchy problem for a capillary drop. I. Irrotational motion. Math. Methods Appl. Sci. 21(12), 1149–1183

  7. Beyer K., Günther M.: The Jacobi equation for irrotational free boundary flows. Analysis (Munich) 20(3), 237–254 (2007)

    Google Scholar 

  8. Brenier Y.: Minimal geodesics on groups of volume-preserving maps and generalized solutions of the Euler equations. Commun. Pure Appl. Math. 52(4), 411–452 (1999)

    Article  MathSciNet  Google Scholar 

  9. Caflisch R.E., Orellana O.F.: Long time existence for a slightly perturbed vortex sheet. Commun. Pure Appl. Math. 39(6), 807–838 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  10. Cheng C.-H., Coutand D., Shkoller S.: On the motion of vortex sheets with surface tension in the 3D Euler equations with vorticity. Commun. Pure Appl. Math. 61(12), 1715–1752 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  11. Christodoulou D., Lindblad H.: On the motion of the free surface of a liquid. Commun. Pure Appl. Math. 53(12), 1536–1602 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  12. Coutand D., Shkoller S.: Well posedness of the free-surface incompressible Euler equations with or without surface tension. J. Am. Math. Soc. 20(3), 829–930 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Craig W.: An existence theory for water waves and the Boussinesq and Korteweg-de Vries scaling limits. Comm. Partial Diff. Equ. 10(8), 787–1003 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  14. Eckart C.: Variation principles of hydrodynamics. Phys. Fluids 3, 421–427 (1960)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. Ebin D.: The equations of motion of a perfect fluid with free boundary are not well posed. Commun. Part. Diff. Equ. 10, 1175–1201 (1987)

    Article  MathSciNet  Google Scholar 

  16. Ebin D.G., Marsden G.: Groups of diffeomorphisms and the notion of an incompressible fluid. Ann. Math. (2) 92, 102–163 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  17. Herivel J.W.: The derivation of the equations of motion of an ideal fluid by Hamilton’s principle. Proc. Cambridge Phil. Soc. 51, 344–349 (1955)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. Iguchi T., Tanaka N., Tani A.: On the two-phase free boundary problem for two-dimensional water waves. Math. Ann. 309(2), 199–223 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  19. Lannes D.: Well-posedness of the water-waves equations. J. Am. Math. Soc. 18, 605–654 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  20. Lindblad H.: Well-posedness for the motion of an incompressible liquid with free surface boundary. Ann. Math. 162(1), 109–194 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  21. Nalimov V.I.: The Cauchy–Poisson problem. (Russian) Dinamika Splosn. Sredy Vyp. 18 Dinamika Zidkost. so Svobod. Granicami 10–210, 254 (1974)

    Google Scholar 

  22. Pazy A.: Semigroups of linear operators and applications to partial differential equations. Applied Mathematical Sciences, 44, pp. viii+279. Springer-Verlag, New York (1983)

    Book  Google Scholar 

  23. Shatah J., Zeng C.: Geometry and a priori estimates for free boundary problems of the Euler’s equation. Commun. Pure Appl. Math. 51(5), 698–744 (2008)

    Article  MathSciNet  Google Scholar 

  24. Shatah J., Zeng C.: A priori estimates for fluid interface problems. Commun. Pure Appl. Math. 61(6), 848–876 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  25. Shnirelman, A.: The geometry of the group of diffeomorphisms and the dynamics of an ideal incompressible fluid. (Russian) Mat. Sb. (N.S.) 128 (170), no. 1, 82–109, 144 (1985)

  26. Schweizer B.: On the three-dimensional Euler equations with a free boundary subject to surface tension. Ann. Inst. H. Poincare. Anal. Non Lineaire 22(6), 753–781 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  27. Sulem C., Sulem P.-L., Bardos C., Frisch U.: Finite time analyticity for the two- and three-dimensional Kelvin–Helmholtz instability. Commun. Math. Phys. 80(4), 485–516 (1981)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  28. Wu S.: Well-posedness in Sobolev spaces of the full water wave problem in 2-D. Invent. Math. 130(1), 39–72 (1997)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  29. Wu S.: Well-posedness in Sobolev spaces of the full water wave problem in 3-D. J. Am. Math. Soc. 12(2), 445–495 (1999)

    Article  MATH  Google Scholar 

  30. Yosihara H.: Gravity waves on the free surface of an incompressible perfect fluid of finite depth. Publ. Res. Inst. Math. Sci. 18(1), 49–96 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  31. Yosihara H.: Capillary-gravity waves for an incompressible ideal fluid. J. Math. Kyoto Univ. 23(4), 649–694 (1983)

    MATH  MathSciNet  Google Scholar 

  32. Zhang P., Zhang Z.: On the free boundary problem of 3-D incompressible Euler equations. Commun. Pure Appl. Math. 61(7), 877–940 (2008)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jalal Shatah.

Additional information

Communicated by Y. Brenier

Jalal Shatah is funded in part by NSF DMS 0701272.

Chongchun Zeng is funded in part by NSF DMS 0801319.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shatah, J., Zeng, C. Local Well-Posedness for Fluid Interface Problems. Arch Rational Mech Anal 199, 653–705 (2011). https://doi.org/10.1007/s00205-010-0335-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-010-0335-5

Keywords

Navigation