Skip to main content
Log in

Well-posedness of Free Boundary Problem in Non-relativistic and Relativistic Ideal Compressible Magnetohydrodynamics

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We consider the free boundary problem for non-relativistic and relativistic ideal compressible magnetohydrodynamics in two and three spatial dimensions with the total pressure vanishing on the plasma–vacuum interface. We establish the local-in-time existence and uniqueness of solutions to this nonlinear characteristic hyperbolic problem under the Rayleigh–Taylor sign condition on the total pressure. The proof is based on certain tame estimates in anisotropic Sobolev spaces for the linearized problem and a modification of the Nash–Moser iteration scheme. Our result is uniform in the speed of light and appears to be the first well-posedness result for the free boundary problem in ideal compressible magnetohydrodynamics with zero total pressure on the moving boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alinhac, S.: Existence d’ondes de raréfaction pour des systèmes quasi-linéaires hyperboliques multidimensionnels. Commun. Part. Differ. Equ. 14(2), 173–230, 1989. https://doi.org/10.1080/03605308908820595

    Article  MATH  Google Scholar 

  2. Alinhac, S., Gérard, P.: Pseudo-differential Operators and the Nash–Moser Theorem. Translated from the 1991 French original by Stephen S. Wilson. American Mathematical Society, Providence, 2007. https://doi.org/10.1090/gsm/082

  3. Chazarain, J., Piriou, A.: Introduction to the Theory of Linear Partial Differential Equations. North-Holland Publishing Co., Amsterdam, 1982. https://www.sciencedirect.com/bookseries/studies-in-mathematics-and-its-applications/vol/14/suppl/C

  4. Chen, G.-Q., Wang, Y.-G.: Existence and stability of compressible current-vortex sheets in three-dimensional magnetohydrodynamics. Arch. Ration. Mech. Anal. 187(3), 369–408, 2008. https://doi.org/10.1007/s00205-007-0070-8

  5. Chen, G.-Q., Secchi, P., Wang, T.: Nonlinear stability of relativistic vortex sheets in three-dimensional Minkowski spacetime. Arch. Ration. Mech. Anal. 232(2), 591–695, 2019. https://doi.org/10.1007/s00205-018-1330-5

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, S.: Initial boundary value problems for quasilinear symmetric hyperbolic systems with characteristic boundary. Translated from Chin. Ann. Math. 3(2), 222–232 (1982). Front. Math. China 2(1), 87–102 (2007). https://doi.org/10.1007/s11464-007-0006-5

  7. Coulombel, J.-F., Secchi, P.: Nonlinear compressible vortex sheets in two space dimensions. Ann. Sci. Éc. Norm. Supér. (4) 41(1), 85–139, 2008. https://doi.org/10.24033/asens.2064

    Article  MathSciNet  MATH  Google Scholar 

  8. Coutand, D., Shkoller, S.: Well-posedness of the free-surface incompressible Euler equations with or without surface tension. J. Am. Math. Soc. 20(3), 829–930, 2007. https://doi.org/10.1090/S0894-0347-07-00556-5

    Article  MathSciNet  MATH  Google Scholar 

  9. Coutand, D., Shkoller, S.: Well-posedness in smooth function spaces for the moving-boundary three-dimensional compressible Euler equations in physical vacuum. Arch. Ration. Mech. Anal. 206(2), 515–616, 2012. https://doi.org/10.1007/s00205-012-0536-1

    Article  MathSciNet  MATH  Google Scholar 

  10. Freistühler, H., Trakhinin, Y.: Symmetrizations of RMHD equations and stability of relativistic current-vortex sheets. Class. Quantum Grav. 30(8), 085012, 2013. https://doi.org/10.1088/0264-9381/30/8/085012

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Goedbloed, H., Keppens, R., Poedts, S.: Magnetohydrodynamics of Laboratory and Astrophysical Plasmas. Cambridge University Press, Cambridge 2019. https://doi.org/10.1017/9781316403679

    Book  MATH  Google Scholar 

  12. Gu, X., Wang, Y.: On the construction of solutions to the free-surface incompressible ideal magnetohydrodynamic equations. J. Math. Pures Appl. 9(128), 1–41, 2019. https://doi.org/10.1016/j.matpur.2019.06.004

    Article  MathSciNet  MATH  Google Scholar 

  13. Hao, C.: On the motion of free interface in ideal incompressible MHD. Arch. Ration. Mech. Anal. 224(2), 515–553, 2017. https://doi.org/10.1007/s00205-017-1082-7

    Article  MathSciNet  MATH  Google Scholar 

  14. Hao, C., Luo, T.: A priori estimates for free boundary problem of incompressible inviscid magnetohydrodynamic flows. Arch. Ration. Mech. Anal. 212(3), 805–847, 2014. https://doi.org/10.1007/s00205-013-0718-5

    Article  MathSciNet  MATH  Google Scholar 

  15. Hao, C., Luo, T.: Ill-posedness of free boundary problem of the incompressible ideal MHD. Commun. Math. Phys. 376(1), 259–286, 2020. https://doi.org/10.1007/s00220-019-03614-1

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Jang, J., Masmoudi, N.: Well-posedness of compressible Euler equations in a physical vacuum. Commun. Pure Appl. Math. 68(1), 61–111, 2015. https://doi.org/10.1002/cpa.21517

    Article  MathSciNet  MATH  Google Scholar 

  17. Kawashima, S.: Systems of a Hyperbolic–Parabolic Composite Type, with Applications to the Equations of Magnetohydrodynamics. Ph.D. Thesis, Kyoto University (1984). https://doi.org/10.14989/doctor.k3193

  18. Landau, L.D., Lifshitz, E.M.: Electrodynamics of Continuous Media. Translated from the second Russian edition by J. Sykes, J. Bell and M. Kearsley. Pergamon Press, Oxford (1984) https://www.sciencedirect.com/book/9780080302751/electrodynamics-of-continuous-media

  19. Lax, P.D., Phillips, R.S.: Local boundary conditions for dissipative symmetric linear differential operators. Commun. Pure Appl. Math. 13, 427–455, 1960. https://doi.org/10.1002/cpa.3160130307

    Article  MathSciNet  MATH  Google Scholar 

  20. Lichnerowicz, A.: Relativistic Hydrodynamics and Magnetohydrodynamics: Lectures on the Existence of Solutions. W. A. Benjamin, New York 1967

    MATH  Google Scholar 

  21. Lindblad, H.: Well-posedness for the motion of an incompressible liquid with free surface boundary. Ann. Math. 162(1), 109–194, 2005. https://doi.org/10.4007/annals.2005.162.109

    Article  MathSciNet  MATH  Google Scholar 

  22. Lindblad, H.: Well posedness for the motion of a compressible liquid with free surface boundary. Commun. Math. Phys. 260(2), 319–392, 2005. https://doi.org/10.1007/s00220-005-1406-6

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Lions, J.-L., Magenes, E.: Non-homogeneous Boundary Value Problems and Applications, vol. II. Springer, New York 1972. https://doi.org/10.1007/978-3-642-65217-2

    Book  MATH  Google Scholar 

  24. Luo, T., Xin, Z., Zeng, H.: Well-posedness for the motion of physical vacuum of the three-dimensional compressible Euler equations with or without self-gravitation. Arch. Ration. Mech. Anal. 213(3), 763–831, 2014. https://doi.org/10.1007/s00205-014-0742-0

    Article  MathSciNet  MATH  Google Scholar 

  25. Métivier, G.: Stability of multidimensional shocks. In: Freistühler, H., Szepessy, A. (eds.) Advances in the Theory of Shock Waves, pp. 25–103. Birkhäuser, Boston 2001. https://doi.org/10.1007/978-1-4612-0193-9_2

    Chapter  MATH  Google Scholar 

  26. Mishkov, R.L.: Generalization of the formula of Faa di Bruno for a composite function with a vector argument. Int. J. Math. Math. Sci. 24, 481–491, 2000. https://doi.org/10.1155/S0161171200002970

    Article  MathSciNet  MATH  Google Scholar 

  27. Morando, A., Secchi, P., Trebeschi, P.: Regularity of solutions to characteristic initial-boundary value problems for symmetrizable systems. J. Hyperbolic Differ. Equ. 6(4), 753–808, 2009. https://doi.org/10.1142/S021989160900199X

    Article  MathSciNet  MATH  Google Scholar 

  28. Morando, A., Trakhinin, Y., Trebeschi, P.: Well-posedness of the linearized plasma–vacuum interface problem in ideal incompressible MHD. Quart. Appl. Math. 72(3), 549–587, 2014. https://doi.org/10.1090/S0033-569X-2014-01346-7

    Article  MathSciNet  MATH  Google Scholar 

  29. Morando, A., Trakhinin, Y., Trebeschi, P.: Local existence of MHD contact discontinuities. Arch. Ration. Mech. Anal. 228(2), 691–742, 2018. https://doi.org/10.1007/s00205-017-1203-3

    Article  MathSciNet  MATH  Google Scholar 

  30. Ohno, M., Shirota, T.: On the initial-boundary-value problem for the linearized equations of magnetohydrodynamics. Arch. Ration. Mech. Anal. 144(3), 259–299, 1998. https://doi.org/10.1007/s002050050118

    Article  MathSciNet  MATH  Google Scholar 

  31. Ohno, M., Shizuta, Y., Yanagisawa, T.: The trace theorem on anisotropic Sobolev spaces. Tohoku Math. J. 46(3), 393–401, 1994. https://doi.org/10.2748/tmj/1178225719

    Article  MathSciNet  MATH  Google Scholar 

  32. Rauch, J.: Symmetric positive systems with boundary characteristic of constant multiplicity. Trans. Am. Math. Soc. 291(1), 167–187, 1985. https://doi.org/10.1090/S0002-9947-1985-0797053-4

    Article  MathSciNet  MATH  Google Scholar 

  33. Secchi, P.: Well-posedness for a mixed problem for the equations of ideal magneto-hydrodynamics. Arch. Math. (Basel) 64(3), 237–245, 1995. https://doi.org/10.1007/BF01188574

    Article  MathSciNet  MATH  Google Scholar 

  34. Secchi, P.: Well-posedness of characteristic symmetric hyperbolic systems. Arch. Ration. Mech. Anal. 134, 155–197, 1996. https://doi.org/10.1007/BF00379552

    Article  MathSciNet  MATH  Google Scholar 

  35. Secchi, P.: On the Nash–Moser iteration technique. In: Amann, H., Giga, Y., Kozono, H., Okamoto, H., Yamazaki, M. (eds.) Recent Developments of Mathematical Fluid Mechanics, pp. 443–457. Birkhäuser, Basel 2016. https://doi.org/10.1007/978-3-0348-0939-9_23

    Chapter  Google Scholar 

  36. Secchi, P., Trakhinin, Y.: Well-posedness of the linearized plasma–vacuum interface problem. Interfaces Free Bound. 15(3), 323–357, 2013. https://doi.org/10.4171/IFB/305

    Article  MathSciNet  MATH  Google Scholar 

  37. Secchi, P., Trakhinin, Y.: Well-posedness of the plasma–vacuum interface problem. Nonlinearity 27(1), 105–169, 2014. https://doi.org/10.1088/0951-7715/27/1/105

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Sun, Y., Wang, W., Zhang, Z.: Well-posedness of the plasma–vacuum interface problem for ideal incompressible MHD. Arch. Ration. Mech. Anal. 234(1), 81–113, 2019. https://doi.org/10.1007/s00205-019-01386-5

    Article  MathSciNet  MATH  Google Scholar 

  39. Trakhinin, Y.: Existence of compressible current-vortex sheets: variable coefficients linear analysis. Arch. Ration. Mech. Anal. 177(3), 331–366, 2005. https://doi.org/10.1007/s00205-005-0364-7

    Article  MathSciNet  MATH  Google Scholar 

  40. Trakhinin, Y.: The existence of current-vortex sheets in ideal compressible magnetohydrodynamics. Arch. Ration. Mech. Anal. 191(2), 245–310, 2009. https://doi.org/10.1007/s00205-008-0124-6

    Article  MathSciNet  MATH  Google Scholar 

  41. Trakhinin, Y.: Local existence for the free boundary problem for nonrelativistic and relativistic compressible Euler equations with a vacuum boundary condition. Commun. Pure Appl. Math. 62(11), 1551–1594, 2009. https://doi.org/10.1002/cpa.20282

    Article  MathSciNet  MATH  Google Scholar 

  42. Trakhinin, Y.: On the well-posedness of a linearized plasma-vacuum interface problem in ideal compressible MHD. J. Differ. Equ. 249(10), 2577–2599, 2010. https://doi.org/10.1016/j.jde.2010.06.007

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Trakhinin, Y.: Stability of relativistic plasma–vacuum interfaces. J. Hyperbolic Differ. Equ. 9(3), 469–509, 2012. https://doi.org/10.1142/S0219891612500154

    Article  MathSciNet  MATH  Google Scholar 

  44. Trakhinin, Y.: On well-posedness of the plasma–vacuum interface problem: the case of non-elliptic interface symbol. Commun. Pure Appl. Anal. 15(4), 1371–1399, 2016. https://doi.org/10.1142/S0219891612500154

    Article  MathSciNet  MATH  Google Scholar 

  45. Yanagisawa, T., Matsumura, A.: The fixed boundary value problems for the equations of ideal magnetohydrodynamics with a perfectly conducting wall condition. Commun. Math. Phys. 136(1), 119–140, 1991. https://doi.org/10.1007/BF02096793

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Zhang, P., Zhang, Z.: On the free boundary problem of three-dimensional incompressible Euler equations. Commun. Pure Appl. Math. 61(7), 877–940, 2008. https://doi.org/10.1002/cpa.20226

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referees for helpful comments and suggestions that helped to improve the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by N. Masmoudi

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research of Yuri Trakhinin was partially supported by RFBR (Russian Foundation for Basic Research) under Grant 19-01-00261-a and by Mathematical Center in Akademgorodok under Agreement No. 075-15-2019-1675 with the Ministry of Science and Higher Education of the Russian Federation. The research of Tao Wang was partially supported by the National Natural Science Foundation of China under Grants 11971359 and 11731008

Appendices

Appendix A: Conventional Notation in the Vector Calculus

For readers’ convenience, we collect the conventional notation in the vector calculus. The spatial dimension is denoted by \(d=2,3\). We abbreviate the partial differentials as

$$\begin{aligned} \partial _t:=\frac{\partial }{\partial t},\quad \partial _i:=\frac{\partial }{\partial x_i} \quad \text {for }i=1,\ldots ,d. \end{aligned}$$

We denote the gradient by \(\nabla :=(\partial _1,\ldots ,\partial _d)^{{\mathsf {T}}}\). For any \(d\times d\) matrix \(F=(F_{ij})\), vectors \(u=(u_1,\ldots ,u_d)^{{\mathsf {T}}}\) and \(v=(v_1,\ldots ,v_d)^{{\mathsf {T}}}\), and scalar a, the symbol \(u\otimes v\) denotes the \(d\times d\) matrix with (ij)-entry \(u_i v_j\), and

$$\begin{aligned}&\nabla \cdot F:= (\partial _j F_{1j},\ldots ,\partial _j F_{dj})^{{\mathsf {T}}}, \quad \nabla \cdot u:= \partial _i u_{i},\\&u\times v:= \left\{ \begin{aligned}&u_1 v_2 -u_2 v_1\quad&\text {if }d=2,\\&(u_2 v_3 -u_3 v_2,u_3 v_1 -u_1 v_3,u_1 v_2 -u_2 v_1)^{{\mathsf {T}}}\quad&\text {if }d=3, \end{aligned} \right. \\&\nabla \times v:= \left\{ \begin{aligned}&\partial _1 v_2 -\partial _2 v_1\quad&\text {if }d=2,\\&(\partial _2 v_3 -\partial _3 v_2,\partial _3 v_1 -\partial _1 v_3,\partial _1 v_2 -\partial _2 v_1)^{{\mathsf {T}}}\quad&\text {if }d=3, \end{aligned} \right. \\&u\times a = -a\times u:=(u_2 a, -u_1 a)^{{\mathsf {T}}}, \quad \nabla \times a :=(\partial _2a , -\partial _1 a )^{{\mathsf {T}}} \quad \text {if }d=2. \end{aligned}$$

The notation above was employed by Kawashima [17, p. 144] to write down the electromagnetic fluid system in two spatial dimensions. The compressible MHD equations (1.1) with \(d=2\) follow from the assumption that all the quantities in (1.1) are independent of \(x_3\) and the components \(v_3\) and \(H_3\) are identically zero.

Appendix B: Symmetrization for RMHD

Let us deduce the symmetric system (5.10) from (5.6)–(5.8). First, the last equation for S in (5.10) is exactly (5.8). In view of (5.2) and (5.9), we have \(\varGamma =(1+\epsilon ^2|w|^2)^{1/2}\) and \(v=\varGamma ^{-1}w\), so that

$$\begin{aligned} \partial _{\alpha } \varGamma =\epsilon ^2 v_i\partial _{\alpha } w_i,\ \ \partial _{\alpha } v=\varGamma ^{-1}\partial _{\alpha } w-\epsilon ^2 \varGamma ^{-1} v v_i \partial _{\alpha } w_i \quad \text {for }\alpha =0,\ldots , d. \end{aligned}$$
(5.10)

It follows from the identities (5.8), (5.6a), and (B.1) that

$$\begin{aligned} \varGamma (\partial _t+v_i\partial _i) p=-\rho a^2(\epsilon ^2 v_i \partial _t w_i +\partial _i w_i ), \end{aligned}$$

which immediately gives the first equation for p in (5.10). Using (5.6d) and (5.7), we have \((\partial _t+v\cdot \nabla ) H-(H\cdot \nabla )v+H\nabla \cdot v=0\), which, together with (B.1), yields

$$\begin{aligned} (\partial _t+v\cdot \nabla ) H +{\mathcal {M}}_i \partial _i w=0, \end{aligned}$$
(5.11)

with \( {\mathcal {M}}_i:=\varGamma ^{-1} \{ H\otimes \varvec{e}_i -H_i I_d -\epsilon ^2 (v_i H- H_i v )\otimes v \}. \) Thanks to (5.6b) and (B.1), we infer from (5.6c) that

$$\begin{aligned} \left( \rho h\varGamma + {\epsilon ^2{\varGamma ^{-1}} |H|^2} \right) (I_d -\epsilon ^2 v\otimes v)(\partial _t +v\cdot \nabla ) w\qquad \qquad \qquad&\\ + \epsilon ^2 v\partial _t p+\nabla p+\sum _{i=1}^{4}{\mathcal {T}}_i=0,&\end{aligned}$$

where

$$\begin{aligned} {\mathcal {T}}_1:=\;&\frac{1}{2} v\partial _t|b|^2 -\epsilon ^2\partial _t ((v\cdot H)H ),\\ {\mathcal {T}}_2:=\;&-\nabla \cdot (\varGamma ^{-2}H\otimes H),\quad {\mathcal {T}}_3:=\frac{1}{2}\epsilon ^{-2}\nabla |b|^2,\\ {\mathcal {T}}_4:= \;&-\epsilon ^2 \nabla \cdot ( (v\cdot H)(H\otimes v+v\otimes H) ) +\epsilon ^2 v\nabla \cdot ( (v\cdot H) H) \\ =\;&-\epsilon ^2 (v\cdot H)( (v\cdot \nabla )H+(H\cdot \nabla )v+H\nabla \cdot v ) -\epsilon ^2 H (v\cdot \nabla ) (v\cdot H) . \end{aligned}$$

By virtue of (5.5), (B.1), and (5.7), we deduce

$$\begin{aligned}&{\mathcal {T}}_1= \epsilon ^2 \varGamma ^{-1} \big \{\epsilon ^2 (v\cdot H) (H\otimes v+v\otimes H)- |b|^2 v\otimes v-H\otimes H\big \}\partial _t w +{\mathcal {T}}_{1a},\\&{\mathcal {T}}_2= -\varGamma ^{-2} (H\cdot \nabla )H_i +2\epsilon ^2 \varGamma ^{-3} H_i H\otimes v \partial _i w, \\&{\mathcal {T}}_3= (\varGamma ^{-2} H_i+ \epsilon ^2 (v\cdot H) v_i )\nabla H_i +\varGamma ^{-1}\varvec{e}_i\otimes (\epsilon ^2(v\cdot H) H-|b|^2 v )\partial _i w, \end{aligned}$$

with \({\mathcal {T}}_{1a}:=\epsilon ^2 (v\varGamma ^{-2} H_i +\epsilon ^2 (v\cdot H) v v_i -H v_i)\partial _t H_i-\epsilon ^2 (v\cdot H)\partial _t H.\) Then we utilize (B.1) and (B.2) for calculating the terms \({\mathcal {T}}_4\) and \({\mathcal {T}}_{1a}\) respectively to derive the equations for w in (5.10). Noticing that \({\mathcal {M}}_0{\mathcal {M}}_i={\mathcal {N}}_i\), we obtain the equations for H in (5.10) from the left-multiplication of (B.2) by \({\mathcal {M}}_0\).

Next we show that the matrix \(B_0(V)\) is positive definite in the non-vacuum region \(\{\rho _*<\rho <\rho ^* \}\). For any \(\varvec{u}\in {\mathbb {R}}^d\setminus \{ 0\}\), we get \(\varvec{u}^{{\mathsf {T}}}{\mathcal {M}}_0\varvec{u}\ge \varGamma ^{-1} |\varvec{u}|^2\), that is, \({\mathcal {M}}_0\ge \varGamma ^{-1}I_d\). Since

$$\begin{aligned} \begin{pmatrix} \dfrac{\varGamma }{\rho a^2}&{} \epsilon ^2 v^{{\mathsf {T}}} \\ \epsilon ^2 v &{}{\mathcal {A}}_0 \end{pmatrix} = \varvec{P}^{{\mathsf {T}}}\begin{pmatrix} \dfrac{\varGamma }{\rho a^2}&{} 0 \\ 0 &{}{\mathcal {A}}_0-\epsilon ^4\dfrac{\rho a^2}{\varGamma } v v^{{\mathsf {T}}} \end{pmatrix}\varvec{P} \ \ \text {with } \varvec{P}:=\begin{pmatrix} 1 &{} \dfrac{\rho a^2}{\varGamma }\epsilon ^2 v^{{\mathsf {T}}} \\ 0 &{}I_d \end{pmatrix}, \end{aligned}$$

it suffices to show that the matrix \({\mathcal {A}}_0-\epsilon ^4 \rho a^2 \varGamma ^{-1} v v^{{\mathsf {T}}}\) is positive definite. For any \(\varvec{u}\in {\mathbb {R}}^d\setminus \{ 0\}\), we have

$$\begin{aligned} \varvec{u}^{{\mathsf {T}}}\big ({\mathcal {A}}_0-\epsilon ^4 \rho a^2 \varGamma ^{-1} v v^{{\mathsf {T}}}\big )\varvec{u} ={\mathcal {T}}_5+{\mathcal {T}}_6, \end{aligned}$$

where \({\mathcal {T}}_5:=\rho h \varGamma |\varvec{u}|^2 -(\epsilon ^2\rho h \varGamma +\epsilon ^4 \rho a^2 \varGamma ^{-1}) (v\cdot \varvec{u})^2\) and

owing to (5.2). By virtue of (2.19) and (5.2), we infer

$$\begin{aligned} {\mathcal {T}}_5\ge \;&\rho h \varGamma |\varvec{u}|^2 -(\epsilon ^2\rho h \varGamma +\epsilon ^4 \rho a^2 \varGamma ^{-1}) |v|^2|\varvec{u}|^2\\ =\;&\rho h \varGamma ^{-1} |\varvec{u}|^2 \left( 1 -c_\mathrm{s}^2 \epsilon ^4 |v|^2\right) \ge \rho h \varGamma ^{-1} |\varvec{u}|^2 (1-\epsilon ^2 |v|^2) =\rho h \varGamma ^{-3} |\varvec{u}|^2. \end{aligned}$$

Therefore, we obtain that \({\mathcal {A}}_0-\epsilon ^4 \rho a^2 \varGamma ^{-1} v v^{{\mathsf {T}}} \) and \(B_0(V)\) are positive definite.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trakhinin, Y., Wang, T. Well-posedness of Free Boundary Problem in Non-relativistic and Relativistic Ideal Compressible Magnetohydrodynamics. Arch Rational Mech Anal 239, 1131–1176 (2021). https://doi.org/10.1007/s00205-020-01592-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-020-01592-6

Navigation