Skip to main content
Log in

Compact hybrid type electronic neuron and computational model of its dynamics

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We propose a Neurosimilator, novel analog neuron circuit and mathematical model of its dynamics that both simulate with high precision the spiking behavior of known types of excitable cells. The analog circuit is compact and can be built using off-the-shelf components. This could facilitate its use in teaching neuroscience and biophysics. The circuit is scalable down to the pF-valued capacitors, presenting an advantage in research on the analog nerve fiber networks. The equations of circuit dynamics contain exponential non-linearities and Heaviside functions, so that the model combines features from the generalized adapting exponential integrate-and-fire neuron model and from the intermittent feedback Hindmarsh-Rose model, but it is not directly related to them. Our four-dimensional system (4D-Neurosimilator) simulates most of excitable cells’ spiking, bursting and chaotic behavior depending on only fewer predefined parameters. In bursting and chaotic oscillatory patterns, the model demonstrates self-adaptive energy flow redistribution. The energy expenditure amounts to ≈36 µJ per one spiking event in original model and to ≈0.63 pJ in its down-scaled version. The model has computational cost comparable to that of the Hodgkin–Huxley model, but it tends to handle noisy input stimulations more efficiently. Our work provides novel insights to the simulation of neuron’s non-linear dynamics and may constitute another choice of available model in computational neuroscience research that expands the limits of a tradeoff between accuracy, biological explainability, noise-resistance and computing time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9.
Fig. 10.
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the paper. The Fortran codes and XPPAUT codes are available from the corresponding author upon request, as well as on GitHub repository: https://github.com/Shlyonsky/3D-Neurosimilator and https://github.com/Shlyonsky/4D-Neurosimilator.

References

  1. Izhikevich, E.M.: Which model to use for cortical spiking neurons? Trans. IEEE Neural Netw. 15, 1063–1070 (2004)

  2. Mead, C.: How we created neuromorphic engineering. Nat. Electron. 3, 434–435 (2020)

    Article  Google Scholar 

  3. Gerstner, W., Kistler, W.M.: Spiking neuron models: single neurons, populations, plasticity. Cambridge University Press, Cambridge (2002)

  4. Van Drongelen W. : Modeling neural activity. ISRN Biomath. 871472, (2013) https://doi.org/10.1155/2013/871472

  5. Abusnaina, A.A., Abdullah, R.: Spiking neuron models: a review. Int. J. Dig. Cont. Tech. Application (JDCTA). 8, 14–21 (2014)

  6. Korkmaz, N., Ozturk, I., Kilic, R.: Multiple perspectives on the hardware implementations of biological neuron models and programmable design aspects. Turk. J. Elec. Eng. Comp. Sci 24, 1729-1746 (2016)

  7. Malmivuo, J., Plonsey, R.: Bioelectromagnetism. 10. Electronic Neuron Models. In book: Bioelectromagnetism—Principles and Applications of Bioelectric and Biomagnetic Fields, Oxford University Press (1995)

  8. Indiveri, G., Linares-Barranco, B., Hamilton, T., van Schaik, A., Etienne-Cummings, R., Delbruck, T., Liu, S-C., Dudek, P., Häfliger, P., Renaud, S., Schemmel, J., Cauwenberghs, G., Arthur, J., Hynna, K., Folowosele, F., Saighi, S., Serrano-Gotarredona, T., Wijekoon, J., Wang, Y., Boahen, K.: Neuromorphic silicon neuron circuits. Front. Neurosci. 73, (2011) https://doi.org/10.3389/fnins.2011.00073

  9. Lapicque, L.: Recherches quantitatives sur l’excitation électrique des nerfs traiteé comme une polarization. J. Physiol. Pathol. Gen. 9, 620–635 (1907)

    Google Scholar 

  10. Harmon, L.D.: Artificial neuron. Science 1295(3354), 962–963 (1959)

    Article  Google Scholar 

  11. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952)

    Article  Google Scholar 

  12. Küpfmüller, K., Jenik, F.: Uber die Nachriehtenverarbeitung in der Nervenzelle. Kybernetik 1, 1 (1961)

    Article  Google Scholar 

  13. Lewis, E.R.: Using electronic circuits to model simple neuroelectric interactions. Proc. of the IEEE. 56, 931–949 (1968)

    Article  Google Scholar 

  14. Roy, G.: A simple electronic analog of the squid axon membrane: The neurofet. IEEE Trans. Biomed. Eng. 19, 60–63 (1972)

    Article  Google Scholar 

  15. Gulrajani, R.M., Roberge, F.A.: The modelling of the Hodgkin-Huxley membrane with field-effect transistors. Med. Biol. Eng. 14, 31–41 (1976)

    Article  Google Scholar 

  16. Koch, U.T., Brunner, M.: A modular analog neuron-model for research and teaching. Biol. Cybern. 59, 303–312 (1988)

    Article  Google Scholar 

  17. Mahowald, M., Douglas, R.: A silicon neuron. Nature 354, 515–518 (1991)

    Article  Google Scholar 

  18. Farquhar, E., Hasler, P.: Bio-physically inspired silicon neuron. IEEE Trans. Circ. Syst. 52, 477–488 (2005)

    Article  Google Scholar 

  19. Rasche, C., Douglas, R.: An improved silicon neuron. Analog Integr. Circuits Signal Process 23, 227–236 (2000)

    Article  Google Scholar 

  20. Sitt, J.D., Aliaga, J.: Versatile biologically inspired electronic neuron. Phys. Rew. 76, 051919 (2007)

    Article  Google Scholar 

  21. Abu-Hassan, K., Taylor, J.D., Morris, P.G., Donati, E., Bortolotto, Z.A., Indiveri, G., Paton, J.F.R., Nogaret, A.: Optimal solid state neurons. Nat. Comm. 10, 5309 (2019)

    Article  Google Scholar 

  22. Rutherford, G.H., Mobille, Z.D., Brandt-Trainer, J.: Analog implementation of a Hodgkin-Huxley model neuron. Am. J. Phys. 88, 918 (2020)

    Article  Google Scholar 

  23. Donati, E., Indiveri, G.: Silicon neuron with programmable ion channel kinematics for bioelectronic applications. In: 2021 IEEE Biomedical Circuits and Systems Conference (BioCAS), https://doi.org/10.1109/BioCAS49922.2021.9644992 (2021)

  24. Wilson, H.R., Cowan, J.D.: A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik 13, 55–80 (1973)

    Article  Google Scholar 

  25. Rose, R.M., Hindmarsh, J.L.: The assembly of ionic currents in a thalamic neuron. I The three-dimensional model. Proc. R. Soc. Lond. B. 237, 267–288 (1989)

  26. FitzHugh, R.: Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1, 445–466 (1961)

    Article  Google Scholar 

  27. Nagumo, J., Arimoto, S., Yoshizawa, S.: An active pulse transmission line simulating nerve axon. Proc. IRE 50, 2061–2070 (1962)

    Article  Google Scholar 

  28. Fourcaud-Trocmé, N., Hansel, D., van Vreeswijk, C., Brunel, N.: How spike generation mechanisms determine the neuronal response to fluctuating inputs. J. Neurosci. 23, 11628–11640 (2003)

    Article  Google Scholar 

  29. Brette, R., Gerstner, W.: Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. J. Neurophys. 94, 3637–3642 (2005)

    Article  Google Scholar 

  30. Morris, C., Lecar, H.: Voltage oscillations in the barnacle giant muscle fiber. Biophys. J. 35, 193–213 (1981)

    Article  Google Scholar 

  31. Bernardo, M., Budd, C., Champneys, A. R. & Kowalczyk, P. Piecewise-Smooth Dynamical Systems: Theory and Applications, vol. 163 Springer Science & Business Media (2008)

  32. Izhikevich, E.M.: Hybrid spiking models. Phil. Trans. R. Soc. A 368, 5061–5070 (2010)

    Article  MathSciNet  Google Scholar 

  33. Hoshimiya, N., Yoshida, S., Shogen, K., Matsuo, T.: Two terminal electronic circuit neuron model with excitable membrane V-I-t characteristics. Biol. Cybern. 35, 125 (1979)

    Article  Google Scholar 

  34. Keener, J.P.: Analog circuitry for the van der Pol and FitzHugh-Nagumo equations. IEEE Trans. Syst. Man. Cyber. SMC-13, 1010–1014 (1983)

  35. Maeda, Y.: A hardware neuronal network model of a two-level central pattern generator. Trans. Jpn. Soc. Med. Biol. Eng. 46, 496–504 (2008)

    Google Scholar 

  36. Weicker, L., Erneux, T., Keuninckx, L., Danckaert, J.: Analytical and experimental study of two delay-coupled excitable units. Phys. Rew. E. 89, 012908 (2014)

    Article  Google Scholar 

  37. Ermentrout, B.: Simulating, analyzing, and animating dynamical systems: A guide to XPPAUT for researchers and students. (Dept of Math, Univ of Pittsburgh). SIAM, Philadelphia. (2002)

  38. Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining Lyapunov exponents from a time series. Physica D 16, 285–317 (1985)

    Article  MathSciNet  Google Scholar 

  39. Rinzel, J., Ermentrout, B.: Analysis of neural excitability and oscillations. In: Koch, C., Segev, I., ed. Methods in neural modeling. 2. Cambridge: MIT, 251–292 (1999)

  40. Wang, R., Zhang, Z., Jiao, X.: Mechanism on brain information processing: Energy coding. Appl. Phys. Lett. 89, 123903 (2006)

    Article  Google Scholar 

  41. Wu, F.Q., Guo, Y.T., Ma, J.: Energy flow accounts for the adaptive property of functional synapses. Sci. China Tech. Sci. 66, 3139–3152 (2023)

    Article  Google Scholar 

  42. Yang, F., Xu, Y., Ma, J.: A memristive neuron and its adaptability to external electric field. Chaos 33, 023110 (2023)

    Article  MathSciNet  Google Scholar 

  43. Levy, W.B., Calvert, V.G.: Communication consumes 35 times more energy than computation in the human cortex, but both costs are needed to predict synapse number. Proc. Natl. Acad. Sci. U.S.A. 118, e2008173118 (2021)

    Article  Google Scholar 

  44. Selverston, A.I., Rabinovich, M.I., Abarbanel, H.D., Elson, R., Szücs, A., Pinto, R.D., Huerta, R., Varona, P.J.: Reliable circuits from irregular neurons: a dynamical approach to understanding central pattern generators. Physiol Paris. 94, 357–374 (2000)

    Article  Google Scholar 

  45. Ngouonkadi, E.B.M., Fotsin, H.B., Louodop Fotso, P., Kamdoum Tamba, V., Cerdeira, H.A.: Bifurcations and multistability in the extended Hindmarsh–Rose neuronal oscillator. Chaos Solitons Fractals. 85, 151–163 (2016)

  46. Richardson, M.J.E.: Dynamics of populations and networks of neurons with voltage-activated and calcium-activated currents. Phys. Rew. E. 80, 021928 (2009)

    Article  Google Scholar 

  47. Yang, Y., Liao, X.: Filippov Hindmarsh-Rose neuronal model with threshold policy control. IEEE Trans. Neural. Net. Learn. Syst. 30, 306–311 (2019)

    Article  Google Scholar 

  48. Gao, C., Qiao, S., An, X.: Global multistability and mechanisms of a memristive autapse-based Filippov Hindmarsh-Rose neuron model. Chaos Sol. Fract. 160, 112281 (2022)

    Article  Google Scholar 

  49. Qiao, S., Gao, C., An, X.: Hidden dynamics and control of a Filippov memristive hybrid neuron model. Nonlinear Dyn. 111, 10529–10557 (2023)

    Article  Google Scholar 

  50. Ma, J., Wang, Q.Y., Jin, W.Y., Xia, Y.F.: Control chaos in Hindmarsh-Rose neuron by using intermittent feedback with one variable. Chin. Phys. Lett. 25, 3582–3585 (2008)

    Article  Google Scholar 

  51. Aihara, K., Suzuki, H.: Theory of hybrid dynamical systems and its applications to biological and medical systems. Phil. Trans. Royal Soc. Lond. A Math. Phys. Eng Sci. 368, 4893–4914 (2010)

  52. Rinzel, J., Miller, R.N.: Numerical calculations of stable and unstable periodic solutions to the Hodgkin-Huxley equations. Math. Biosci. 49, 27–59 (1980)

    Article  MathSciNet  Google Scholar 

  53. Guckenheimer, J., Oliva, R.A.: Chaos in the Hodgkin-Huxley model. SIAM J. Appl. Dyn. Syst. 1, 105–114 (2002)

    Article  MathSciNet  Google Scholar 

  54. Henker, S., Partzsch, J., Schüffny, R.: Accuracy evaluation of numerical methods used in state-of-the-art simulators for spiking neural networks. J. Comp. Neurosci. 32, 309–326 (2012)

    Article  MathSciNet  Google Scholar 

  55. Skocik, M.J., Long, L.N.: On the capabilities and computational costs of neuron models. IEEE Trans. Neural Netw. Learn. Sys. 25, 1474–1483 (2014)

  56. Naveros, F., Garrido, J.A., Carrillo, R.R., Ros, E.,Luque, N.R.: Event- and time-driven techniques using parallel CPU-GPU co-processing for spiking neural networks. Front. Neuroinformat. 11, 7 (2017)

  57. Valadez-Godínez, S., Sossa, H., Santiago-Montero, R.: On the accuracy and computational cost of spiking neuron implementation. Neural Netw. 122, 196–217 (2020)

    Article  Google Scholar 

  58. Smets,, H., Stumpp, L., Julémont, N., Cury, J., Debelle, A., Innocenti, B., Vespa, S., Haut, B., Doguet, P., Vanhoestenberghe, A., Delbeke, J., El Tahry, R., Nonclercq, A.: Analysing vagus nerve spontaneous activity using finite element modelling. J. Neural Eng. 18, abe68f https://doi.org/10.1088/1741-2552/abe68f. (2021)

  59. Kim, S., Kim, S., Ho, D.H., Roe, D.G., Choi, Y.J., Kim, M.J., Kim, U.J., Le, M.L., Kim, J., Kim, S.H., Cho, J.H.: Neurorobotic approaches to emulate human motor control with the integration of artificial synapse. Sci. Adv. 8, eabo3326 https://doi.org/10.1126/sciadv.abo3326 (2022)

  60. Dupuis, F., Shlyonsky, V., de Prelle, B., Gall, D.: Neurosimilator for undergraduate biophysics and neurophysiology courses. J. Undergrad. Neurosci. Edu. 22, https://doi.org/10.59390/MIUV3158

Download references

Acknowledgements

Authors would like to thank Prof. P. Gaspard for his critical reading of the manuscript and his helpful suggestions.

Funding

This study was supported by funds from the Université libre de Bruxelles.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception. Electronic circuit was designed by DF and SV. Nodal analysis was performed by SV, PB and OM. Fortran code was written and optimized by SV and GD. Data collection and analysis were made by SV, ET, NA and PB. GD provided funding and coordinated the study. The first draft of the manuscript was written by SV and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to V. Shlyonsky.

Ethics declarations

Conflict of Interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shlyonsky, V., Dupuis, F., de Prelle, B. et al. Compact hybrid type electronic neuron and computational model of its dynamics. Nonlinear Dyn 112, 14343–14362 (2024). https://doi.org/10.1007/s11071-024-09772-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-024-09772-9

Keywords

Navigation