Skip to main content
Log in

Energy flow accounts for the adaptive property of functional synapses

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

In the presence of external stimuli and electromagnetic radiation (EMR), biological neurons can exhibit different firing patterns and switch to appropriate firing modes because of intrinsic self-adaption. Coupling to memristive synapses can discern the EMR effect, and memristive synapses connecting to neurons can be effectively regulated by external physical fields. From a dynamical viewpoint, the appropriate setting for memristive synapse intensity can trigger changes in neural activities; however, the biophysical mechanism of adaptive regulation in the memristive biophysical neuron has not been clarified. Herein, a memristor is used to control a simple neural circuit by generating a memristive current, and an equivalent memristive neuron model is obtained. A single firing mode can be stabilized in the absence of EMR, while multiple firing modes occur in the neuron under EMR. The gain of the memristive synaptic current is dependent on the energy flow, and the shunted energy flow in the memristive channel can control the energy ratio between the electric field and magnetic field. The growth and enhancement of the memristive synapse depend on the energy flow across the memristive channel. The memristive synapse is enhanced when its field energy is below the threshold, and it is suppressed when its field energy is above the threshold. These results explain why and how multiple firing modes are induced and controlled in biological neurons. Furthermore, the self-adaption property of memristive neurons was also clarified. Thus, the control of energy flow in the memristive synapse can effectively regulate the membrane potentials, and neural activities can be effectively controlled to select suitable body gaits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang T, Shi Y, Puglisi F M, et al. Electroforming in metal-oxide memristive synapses. ACS Appl Mater Interfaces, 2020, 12: 11806–11814

    Article  Google Scholar 

  2. Wang J, Zhuge F. Memristive synapses for brain-inspired computing. Adv Mater Technol, 2019, 4: 1800544

    Article  Google Scholar 

  3. Jang B C, Kim S, Yang S Y, et al. Polymer analog memristive synapse with atomic-scale conductive filament for flexible neuromorphic computing system. Nano Lett, 2019, 19: 839–849

    Article  Google Scholar 

  4. Yang R, Huang H M, Guo X. Memristive synapses and neurons for bioinspired computing. Adv Electron Mater, 2019, 5: 1900287

    Article  Google Scholar 

  5. Covi E, Brivio S, Serb A, et al. Analog memristive synapse in spiking networks implementing unsupervised learning. Front Neurosci, 2016, 10: 482

    Article  Google Scholar 

  6. Long K, Zhang X. Memristive-synapse spiking neural networks based on single-electron transistors. J Comput Electron, 2020, 19: 435–450

    Article  Google Scholar 

  7. Bao B C, Zhu Y X, Ma J, et al. Memristive neuron model with an adapting synapse and its hardware experiments. Sci China Tech Sci, 2021, 64: 1107–1117

    Article  Google Scholar 

  8. Tabekoueng Z N, Shankar Muni S, Fonzin Fozin T, et al. Coexistence of infinitely many patterns and their control in heterogeneous coupled neurons through a multistable memristive synapse. Chaos, 2022, 32: 053114

    Article  MathSciNet  Google Scholar 

  9. Lin H, Wang C, Sun Y, et al. Firing multistability in a locally active memristive neuron model. Nonlinear Dyn, 2020, 100: 3667–3683

    Article  Google Scholar 

  10. Fossi J T, Deli V, Njitacke Z T, et al. Phase synchronization, extreme multistability and its control with selection of a desired pattern in hybrid coupled neurons via a memristive synapse. Nonlinear Dyn, 2022, 109: 925–942

    Article  Google Scholar 

  11. Sung S H, Kim T J, Shin H, et al. Simultaneous emulation of synaptic and intrinsic plasticity using a memristive synapse. Nat Commun, 2022, 13: 2811

    Article  Google Scholar 

  12. Li R, Wang Z, Dong E. A new locally active memristive synapse-coupled neuron model. Nonlinear Dyn, 2021, 104: 4459–4475

    Article  Google Scholar 

  13. Serb A, Corna A, George R, et al. Memristive synapses connect brain and silicon spiking neurons. Sci Rep, 2020, 10: 2590

    Article  Google Scholar 

  14. Zhang Y, He W, Wu Y, et al. Highly compact artificial memristive neuron with low energy consumption. Small, 2018, 14: 1802188

    Article  Google Scholar 

  15. Wu F, Zhang Y, Zhang X. Regulating firing rates in a neural circuit by activating memristive synapse with magnetic coupling. Nonlinear Dyn, 2019, 98: 971–984

    Article  Google Scholar 

  16. Baran A Y, Korkmaz N, Öztürk I, et al. On addressing the similarities between STDP concept and synaptic/memristive coupled neurons by realizing of the memristive synapse based HR neurons. Eng Sci Tech Int J, 2022, 32: 101062

    Google Scholar 

  17. Lin H, Wang C, Deng Q, et al. Review on chaotic dynamics of memristive neuron and neural network. Nonlinear Dyn, 2021, 106: 959–973

    Article  Google Scholar 

  18. Xu F, Zhang J, Fang T, et al. Synchronous dynamics in neural system coupled with memristive synapse. Nonlinear Dyn, 2018, 92: 1395–1402

    Article  Google Scholar 

  19. Guo Y, Zhu Z, Wang C, et al. Coupling synchronization between photoelectric neurons by using memristive synapse. Optik, 2020, 218: 164993

    Article  Google Scholar 

  20. Wu F, Guo Y, Ma J. Reproduce the biophysical function of chemical synapse by using a memristive synapse. Nonlinear Dyn, 2022, 109: 2063–2084

    Article  Google Scholar 

  21. Wu F, Hu X, Ma J. Estimation of the effect of magnetic field on a memristive neuron. Appl Math Comput, 2022, 432: 127366

    Article  MathSciNet  MATH  Google Scholar 

  22. Chen M, Feng Y, Bao H, et al. State variable mapping method for studying initial-dependent dynamics in memristive hyper-jerk system with line equilibrium. Chaos Solitons Fractals, 2018, 115: 313–324

    Article  MathSciNet  Google Scholar 

  23. Bao H, Chen M, Wu H G, et al. Memristor initial-boosted coexisting plane bifurcations and its extreme multi-stability reconstitution in two-memristor-based dynamical system. Sci China Tech Sci, 2020, 63: 603–613

    Article  Google Scholar 

  24. Zhang Y, Liu Z, Wu H, et al. Extreme multistability in memristive hyper-jerk system and stability mechanism analysis using dimensionality reduction model. Eur Phys J Spec Top, 2019, 228: 1995–2009

    Article  Google Scholar 

  25. Wu H G, Ye Y, Bao B C, et al. Memristor initial boosting behaviors in a two-memristor-based hyperchaotic system. Chaos Solitons Fractals, 2019, 121: 178–185

    Article  MathSciNet  MATH  Google Scholar 

  26. Wu F, Ma J, Ren G. Synchronization stability between initial-dependent oscillators with periodical and chaotic oscillation. J Zhejiang Univ Sci A, 2018, 19: 889–903

    Article  Google Scholar 

  27. Ma J, Xu W, Zhou P, et al. Synchronization between memristive and initial-dependent oscillators driven by noise. Physica A, 2019, 536: 122598

    Article  MathSciNet  MATH  Google Scholar 

  28. Huang P, Guo Y, Ren G, et al. Energy-induced resonance synchronization in neural circuits. Mod Phys Lett B, 2021, 35: 2150433

    Article  MathSciNet  Google Scholar 

  29. Ma J, Wu F, Wang C. Synchronization behaviors of coupled neurons under electromagnetic radiation. Int J Mod Phys B, 2017, 31: 1650251

    Article  MathSciNet  Google Scholar 

  30. Zhang Y, Zhou P, Yao Z, et al. Resonance synchronisation between memristive oscillators and network without variable coupling. Pramana, 2021, 95: 49

    Article  Google Scholar 

  31. Ma J, Tang J. A review for dynamics of collective behaviors of network of neurons. Sci China Tech Sci, 2015, 58: 2038–2045

    Article  Google Scholar 

  32. Lv M, Wang C, Ren G, et al. Model of electrical activity in a neuron under magnetic flow effect. Nonlinear Dyn, 2016, 85: 1479–1490

    Article  Google Scholar 

  33. Xu Y, Jia Y, Ge M, et al. Effects of ion channel blocks on electrical activity of stochastic Hodgkin-Huxley neural network under electromagnetic induction. Neurocomputing, 2018, 283: 196–204

    Article  Google Scholar 

  34. Wan Q, Yan Z, Li F, et al. Complex dynamics in a Hopfield neural network under electromagnetic induction and electromagnetic radiation. Chaos, 2022, 32: 073107

    Article  MathSciNet  Google Scholar 

  35. Takembo C N, Mvogo A, Fouda H P E, et al. Wave pattern stability of neurons coupled by memristive electromagnetic induction. Nonlinear Dyn, 2019, 96: 1083–1093

    Article  Google Scholar 

  36. Yang Y, Ma J, Xu Y, et al. Energy dependence on discharge mode of Izhikevich neuron driven by external stimulus under electromagnetic induction. Cogn Neurodyn, 2021, 15: 265–277

    Article  Google Scholar 

  37. Kafraj M S, Parastesh F, Jafari S. Firing patterns of an improved Izhikevich neuron model under the effect of electromagnetic induction and noise. Chaos Solitons Fractals, 2020, 137: 109782

    Article  MathSciNet  Google Scholar 

  38. Jin W Y, Wang A, Ma J, et al. Effects of electromagnetic induction and noise on the regulation of sleep wake cycle. Sci China Tech Sci, 2019, 62: 2113–2119

    Article  Google Scholar 

  39. Yao Z, Wang C, Zhou P, et al. Regulating synchronous patterns in neurons and networks via field coupling. Commun Nonlinear Sci Numer Simul, 2021, 95: 105583

    Article  MathSciNet  MATH  Google Scholar 

  40. Wu F Q, Ma J, Zhang G. Energy estimation and coupling synchronization between biophysical neurons. Sci China Tech Sci, 2020, 63: 625–636

    Article  Google Scholar 

  41. Zandi-Mehran N, Jafari S, Hashemi Golpayegani S M R, et al. Different synaptic connections evoke different firing patterns in neurons subject to an electromagnetic field. Nonlinear Dyn, 2020, 100: 1809–1824

    Article  Google Scholar 

  42. Qin H, Wang C, Cai N, et al. Field coupling-induced pattern formation in two-layer neuronal network. Physica A, 2018, 501: 141–152

    Article  MathSciNet  MATH  Google Scholar 

  43. Ma S, Yao Z, Zhang Y, et al. Phase synchronization and lock between memristive circuits under field coupling. AEU-Int J Electron Commun, 2019, 105: 177–185

    Article  Google Scholar 

  44. Guo Y, Zhou P, Yao Z, et al. Biophysical mechanism of signal encoding in an auditory neuron. Nonlinear Dyn, 2021, 105: 3603–3614

    Article  Google Scholar 

  45. Zhang X, Ma J. Wave filtering and firing modes in a light-sensitive neural circuit. J Zhejiang Univ Sci A, 2021, 22: 707–720

    Article  Google Scholar 

  46. Yu D, Wang G, Li T, et al. Filtering properties of Hodgkin-Huxley neuron on different time-scale signals. Commun Nonlinear Sci Numer Simul, 2023, 117: 106894

    Article  MathSciNet  MATH  Google Scholar 

  47. Xie Y, Ma J. How to discern external acoustic waves in a piezoelectric neuron under noise?. J Biol Phys, 2022, 48: 339–353

    Article  Google Scholar 

  48. Xie Y, Zhou P, Yao Z, et al. Response mechanism in a functional neuron under multiple stimuli. Physica A, 2022, 607: 128175

    Article  MathSciNet  MATH  Google Scholar 

  49. Xie Y, Yao Z, Hu X, et al. Enhance sensitivity to illumination and synchronization in light-dependent neurons. Chin Phys B, 2021, 30: 120510

    Article  Google Scholar 

  50. Xie Y, Zhu Z G, Zhang X F, et al. Control of firing mode in nonlinear neuron circuit driven by photocurrent. Acta Phys Sin, 2021, 70: 210502

    Article  Google Scholar 

  51. Liu Y, Xu W, Ma J, et al. A new photosensitive neuron model and its dynamics. Front Inform Technol Electron Eng, 2020, 21: 1387–1396

    Article  Google Scholar 

  52. Guo Y, Wang C, Yao Z, et al. Desynchronization of thermosensitive neurons by using energy pumping. Physica A, 2022, 602: 127644

    Article  MathSciNet  MATH  Google Scholar 

  53. Xu Y, Ma J. Control of firing activities in thermosensitive neuron by activating excitatory autapse. Chin Phys B, 2021, 30: 100501

    Article  Google Scholar 

  54. Tagne J F, Edima H C, Njitacke Z T, et al. Bifurcations analysis and experimental study of the dynamics of a thermosensitive neuron conducted simultaneously by photocurrent and thermistance. Eur Phys J Spec Top, 2022, 231: 993–1004

    Article  Google Scholar 

  55. Hussain I, Ghosh D, Jafari S. Chimera states in a thermosensitive FitzHugh-Nagumo neuronal network. Appl Math Comput, 2021, 410: 126461

    Article  MathSciNet  MATH  Google Scholar 

  56. Xu Y, Ma J. Pattern formation in a thermosensitive neural network. Commun Nonlinear Sci Numer Simul, 2022, 111: 106426

    Article  MathSciNet  MATH  Google Scholar 

  57. Xie Y, Zhou P, Ma J. Energy balance and synchronization via inductive-coupling in functional neural circuits. Appl Math Model, 2023, 113: 175–187

    Article  MathSciNet  MATH  Google Scholar 

  58. Yao Z, Wang C. Collective behaviors in a multiple functional network with hybrid synapses. Physica A, 2022, 605: 127981

    Article  MATH  Google Scholar 

  59. Yao Z, Wang C. Control the collective behaviors in a functional neural network. Chaos Solitons Fractals, 2021, 152: 111361

    Article  MathSciNet  MATH  Google Scholar 

  60. Zhang Y, Wang C N, Tang J, et al. Phase coupling synchronization of FHN neurons connected by a Josephson junction. Sci China Tech Sci, 2020, 63: 2328–2338

    Article  Google Scholar 

  61. Sun J, Li C, Lu T, et al. A memristive chaotic system with hypermultistability and its application in image encryption. IEEE Access, 2020, 8: 139289–139298

    Article  Google Scholar 

  62. Hu Y, Li Q, Ding D, et al. Multiple coexisting analysis of a fractional-order coupled memristive system and its application in image encryption. Chaos Solitons Fractals, 2021, 152: 111334

    Article  MathSciNet  MATH  Google Scholar 

  63. Tsafack N, Iliyasu A M, De Dieu N J, et al. A memristive RLC oscillator dynamics applied to image encryption. J Inf Security Appl, 2021, 61: 102944

    Google Scholar 

  64. Lai Q, Lai C, Zhang H, et al. Hidden coexisting hyperchaos of new memristive neuron model and its application in image encryption. Chaos Solitons Fractals, 2022, 158: 112017

    Article  MathSciNet  Google Scholar 

  65. Baysal V, Yilmaz E. Effects of electromagnetic induction on vibrational resonance in single neurons and neuronal networks. Physica A, 2020, 537: 122733

    Article  MathSciNet  MATH  Google Scholar 

  66. Mannan Z I, Adhikari S P, Yang C, et al. Memristive imitation of synaptic transmission and plasticity. IEEE Trans Neural Netw Learn Syst, 2019, 30: 3458–3470

    Article  Google Scholar 

  67. Fang X, Tan Y, Zhang F, et al. Transient response and firing behaviors of memristive neuron circuit. Front Neurosci, 2022, 16: 922086

    Article  Google Scholar 

  68. Ran Y, Pei Y, Zhou Z, et al. A review of Mott insulator in memristors: The materials, characteristics, applications for future computing systems and neuromorphic computing. Nano Res, 2023, 16: 1165–1182

    Article  Google Scholar 

  69. Wang J, Cao G, Sun K, et al. Alloy electrode engineering in memristors for emulating the biological synapse. Nanoscale, 2022, 14: 1318–1326

    Article  Google Scholar 

  70. Gao F, Chen Y, Li Y, et al. Investigation of electrical performance and synaptic long-term plasticity of memristive devices with new transition metal carbide. Semicond Sci Technol, 2020, 35: 035008

    Article  Google Scholar 

  71. Kyprianidis I M, Papachristou V, Stouboulos I N, et al. Dynamics of coupled chaotic Bonhoeffer-van der Pol oscillators. WSEAS T Syst, 2012, 11: 516–526

    Google Scholar 

  72. Kobe D H. Helmholtz’s theorem revisited. Am J Phys, 1986, 54: 552–554

    Article  Google Scholar 

  73. Zhou P, Hu X, Zhu Z, et al. What is the most suitable Lyapunov function? Chaos Solitons Fractals, 2021, 150: 111154

    Article  MathSciNet  MATH  Google Scholar 

  74. Palabas T, Torres J J, Perc M, et al. Double stochastic resonance in neuronal dynamics due to astrocytes. Chaos Solitons Fractals, 2023, 168: 113140

    Article  Google Scholar 

  75. Xie Y, Yao Z, Ma J. Formation of local heterogeneity under energy collection in neural networks. Sci China Tech Sci, 2023, 66: 439–455

    Article  Google Scholar 

  76. Cao B, Gu H, Wang R. Complex dynamics of hair bundle of auditory nervous system (II): Forced oscillations related to two cases of steady state. Cogn Neurodyn, 2022, 16: 1163–1188

    Article  Google Scholar 

  77. Nobukawa S, Wagatsuma N, Ikeda T, et al. Effect of steady-state response versus excitatory/inhibitory balance on spiking synchronization in neural networks with log-normal synaptic weight distribution. Cogn Neurodyn, 2022, 16: 871–885

    Article  Google Scholar 

  78. Majhi S, Perc M, Ghosh D. Dynamics on higher-order networks: A review. J R Soc Interface, 2022, 19: 20220043

    Article  Google Scholar 

  79. Ma J. Biophysical neurons, energy, and synapse controllability: A review. J Zhejiang Univ Sci A, 2023, 24: 109–129

    Article  Google Scholar 

  80. Yang F, Xu Y, Ma J. A memristive neuron and its adaptability to external electric field. Chaos, 2023, 33: 023110

    Article  MathSciNet  Google Scholar 

  81. Lin H, Wang C, Yu F, et al. A review of chaotic systems based on memristive hopfield neural networks. Mathematics, 2023, 11: 1369

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Ma.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant No. 12072139).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, F., Guo, Y. & Ma, J. Energy flow accounts for the adaptive property of functional synapses. Sci. China Technol. Sci. 66, 3139–3152 (2023). https://doi.org/10.1007/s11431-023-2441-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-023-2441-5

Navigation