Skip to main content
Log in

The modelling of the Hodgkin-Huxley membrane with field-effect transistors

  • Published:
Medical and biological engineering Aims and scope Submit manuscript

Abstract

An electronic analogue of a patch of squid axon membrane is described. The analogue is based on the 4-branch Hodgkin-Huxley electrical equivalent circuit for the squid axon membrane. The variable sodium and potassium conductances are each simulated by a field-effect transistor in series with a resistor. The criteria for selection of appropriate transistors, the technique of matching the transients in the sodium and potassium conductances and the supplementary electronic circuitry required are all described. The analogue under no external stimulation was normally silent, but, with appropriate modifications, could also generate spontaneous action potentials or subthreshold oscillations. Its performance in each of these three modes is described and compared with published data. The mechanisms behind spontaneous action potentials and subthreshold oscillations, and the relevance of these mechanisms to spontaneous activity in the real biological membrane, are also discussed.

Sommaire

L'article décrit un analogue électronique d'une plaque de membrane d'axone de calmar. L'analogue est basé sur le circuit équivalent électrique à quatre branches de Hodgkin-Huxley pour la membrane axone du calmar. Les conductances varables du sodium et du potassium sont toutes deux simulées par l'effet de champ d'un transistor monté en série avec une résistance. Les critères de sélection des transistors appropriés, la technique d'assortiment des transients des conductances du sodium et du potassium et les circuits électroniques supplémentaires nécessaires sont tous décrits. L'analogue ne recevant aucune stimulation extérieure était normalement silencieux, mais avec les modifications appropriées, il pouvait générer des potentiels d'action spontanés ou des oscillations plus faibles que la limite d'entretien. Sa performance dans chacun des trois modes est décrite et est comparée avec les données publiées. L'article décrit aussi le mécanisme à la base des potentiels d'action spontanée et les oscillations sous la limite d'entretien ainsi que la pertinence de ces mécanismes dans l'activité spontanée d'une membrane biologique réelle.

Zusammenfassung

Die elektronische Simulation eines Stücks aus der Tintenfisch-Rückgratmembrane wird beschrieben. Die Simulation basiert auf der verfach verzweigten elektrischen Äquivalentschaltung nach Hodgkin-Huxley für die Rückgratmembrane des Tintenfisches. Die schwankende Konduktanz von Natrium und Kalium wird jeweils durch einen Feldeffekttransistor simuliert, der mit einem Widerstand in Serie geschaltet ist. Die Kriterien zur Wahl der entsprechenden Transistoren, das Verfahren zur Anpassung der Einschwingvorgänge in den Natrium- und Kaliumkonduktanzen und die zusätzlichen Elektronikschaltungen, die erforderlich sing, werden beschrieben. Das Analogmodell war ohne externe Stimulation normalerweise geräuschlos, konnte jedoch auch mit den entsprechenden Änderungen spontane Aktionspotentiale oder Schwingungen mit unter der Schwelle liegenden Werten erzeugen, Seine Leistung in jeder dieser drei Betriebsarten wird beschrieben und mit den veröffentlichten Angaben verglichen. Ferner wird der Mechanismus hinter den spontanen Aktionspotentialen und den Schwingungen mit unter der Schwelle liegenden Werten sowie die Relevanz dieser Mechanismen für die spontane Aktivität in der echten biologischen Membrane besprochen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Carpenter, D. andGunn, R. (1970) The dependence of pacemaker discharge ofAplysia neurons upon Na+ and Ca++,J. Cell Physiol.,75, 121–127.

    Article  Google Scholar 

  • Carpenter, D. O. (1967) Temperature effects on pacemaker generation, membrane potential and critical firing threshold inAplysia neurons,J. Gen. Physiol.,50, 1469–1484.

    Article  Google Scholar 

  • Cole, K. S., Antosiewicz, H. A. andRabinowitz, P. (1955) Automatic computation of nerve excitation,J. Soc. Int. & Appl. Math.,3, 153–172.

    Article  MATH  MathSciNet  Google Scholar 

  • Cooley, J. W. andDodge, Jun., F. A. (1966) Digital computer solutions for excitation and propagation of the nerve impulse,Biophys. J.,6, 583–599.

    Google Scholar 

  • Fitzhugh, R. (1960) Thresholds and plateaus in the Hodgkin-Huxley nerve equations,J. Gen. Physiol.,43, 867–896.

    Article  Google Scholar 

  • Fitzhugh, R. (1961) Impulses and physiological states in theoretical models of nerve membrane,Biophys. J.,1, 445–466.

    Article  Google Scholar 

  • Fitzhugh, R. (1966) Theoretical effect of temperature on threshold in the Hodgkin-Huxley nerve model,J. Gen. Physiol.,49, 989–1005.

    Article  Google Scholar 

  • Ghausi, M. S. (1971) Electronic circuits. (Van Nostrand).

  • Guttman, R. (1966) Temperature characteristics of excitation in space-clamped squid axons,J. Gen. Physiol.,49, 1007–1018.

    Article  Google Scholar 

  • Guttman, R. (1968) Temperature dependence of accommodation and excitation in space-clamped axons,ibid.,,51, 759–769.

    Article  Google Scholar 

  • Hagiwara, S. andOomura, Y. (1958) The critical depolarization for the spike in the squid giant axon,Japan J. Physiol.,8, 234–245.

    Google Scholar 

  • Hodgkin, A. L. andHuxley, A. F. (1952a) Currents carried by sodium and potassium ions through the membrane of the giant axon ofLoligo, J. Physiol.,116, 449–472.

    Google Scholar 

  • Hodgkin, A. L. andHuxley, A. F. (1952b) The components of membrane conductance in the giant axon ofLoligo, ibid.,116, 473–496.

    Google Scholar 

  • Hodgkin, A. L. andHuxley, A. F. (1952c) The dual effect of membrane potential on sodium conductance in the giant axon ofLoligo, ibid.,116, 497–506.

    Google Scholar 

  • Hodgkin, A. L. andHuxley, A. F. (1952d) A quantitative description of membrane current and its application to conduction and excitation in nerve,ibid.,117, 500–544.

    Google Scholar 

  • Junge, D. andStephens, C. L. (1973) Cyclic variation of potassium conductance in a burst-generating neurone inAplysia, ibid.,235, 155–181.

    Google Scholar 

  • Lewis E. R. (1964a) Neural analog studies III. Synaptic transfer function. Semi-annual report, No. 7, 1–58, The Laboratory for Automata Research, General Precision, Inc.

    Google Scholar 

  • Lewis E. R. (1964b) An electronic analog of the neuron based on the dynamics of potassium and sodium ion fluxes,in Reiss R. F., (Ed.), Neural theory and modeling Stanford University Press, Palo Alto 154–189.

    Google Scholar 

  • Lewis E. R. (1968) An electronic model of neuroelectric point processes,Kybernetik,5, 30–46.

    Article  Google Scholar 

  • Mathieu, P. A. andRoberge, F.A. (1971) Characteristics of pacemaker oscillations inAplysia neurons.Can. J. Physiol. Pharmacol.,49, 787–795.

    Google Scholar 

  • Palti, Y. (1971) Analysis and reconstruction of axon membrane action potential.in:Adelman, W. J. Jun. (Ed.) Biophysics and physiology of excitable membranes, Van Nostrand Reinhold, New York, 206–214.

    Google Scholar 

  • Roy, G. (1972) A simple electronic analog of the squid axon membrane: the Neurofet.IEEE Trans.,BME-19, 60–63.

    Google Scholar 

  • Vassalle, M. (1966) Analysis of cardiac pacemaker potential using a ‘voltage clamp’ technique.Am. J. Physiol.,210, 1335–1341.

    Google Scholar 

  • Wei, L. Y. (1966) A new theory of nerve conduction.IEEE Spectrum,3, 123–127.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gulrajani, R.M., Roberge, F.A. The modelling of the Hodgkin-Huxley membrane with field-effect transistors. Med. & biol. Engng. 14, 31–41 (1976). https://doi.org/10.1007/BF02477087

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02477087

Keywords

Navigation