Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Stretchable ionic–electronic bilayer hydrogel electronics enable in situ detection of solid-state epidermal biomarkers

Abstract

Continuous and in situ detection of biomarkers in biofluids (for example, sweat) can provide critical health data but is limited by biofluid accessibility. Here we report a sensor design that enables in situ detection of solid-state biomarkers ubiquitously present on human skin. We deploy an ionic–electronic bilayer hydrogel to facilitate the sequential dissolution, diffusion and electrochemical reaction of solid-state analytes. We demonstrate continuous monitoring of water-soluble analytes (for example, solid lactate) and water-insoluble analytes (for example, solid cholesterol) with ultralow detection limits of 0.51 and 0.26 nmol cm−2, respectively. Additionally, the bilayer hydrogel electrochemical interface reduces motion artefacts by a factor of three compared with conventional liquid-sensing electrochemical interfaces. In a clinical study, solid-state epidermal biomarkers measured by our stretchable wearable sensors showed a high correlation with biomarkers in human blood and dynamically correlated with physiological activities. These results present routes to universal platforms for biomarker monitoring without the need for biofluid acquisition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Design and mechanism of a stretchable sensor for SEBs.
Fig. 2: In vitro characterization of solid-state analyte sensors.
Fig. 3: Mechanoelectrochemical characterization and modelling of solid-state analyte sensors.
Fig. 4: On-body evaluation of the SEB sensor.

Similar content being viewed by others

Data availability

All data needed to evaluate the conclusions in the paper are available in the main text or the Supplementary Information. Source data for each figure are provided. Additional data related to this paper may be requested from the authors. Source data are provided with this paper.

Code availability

The customized code used to model the electrochemical kinetics of the sensor patch is available from the corresponding author upon request.

References

  1. Trumbo, P., Schlicker, S., Yates, A. A. & Poos, M. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids. J. Am. Diet. Assoc. 102, 1621–1630 (2002).

    PubMed  Google Scholar 

  2. Wang, T. J. et al. Metabolite profiles and the risk of developing diabetes. Nat. Med. 17, 448–453 (2011).

    PubMed  PubMed Central  Google Scholar 

  3. Akbaraly, T. et al. Association of circulating metabolites with healthy diet and risk of cardiovascular disease: analysis of two cohort studies. Sci. Rep. 8, 8620 (2018).

    PubMed  PubMed Central  Google Scholar 

  4. Kim, J., Campbell, A. S., de Ávila, B. E.-F. & Wang, J. Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 37, 389–406 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Yang, Y. & Gao, W. Wearable and flexible electronics for continuous molecular monitoring. Chem. Soc. Rev. 48, 1465–1491 (2019).

    CAS  PubMed  Google Scholar 

  6. Gao, W. et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529, 509–514 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Yang, Y. et al. A laser-engraved wearable sensor for sensitive detection of uric acid and tyrosine in sweat. Nat. Biotechnol. 38, 217–224 (2020).

    CAS  PubMed  Google Scholar 

  8. Koh, A. et al. A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat. Sci. Transl. Med. 8, 366ra165 (2016).

    PubMed  PubMed Central  Google Scholar 

  9. Sempionatto, J. R. et al. An epidermal patch for the simultaneous monitoring of haemodynamic and metabolic biomarkers. Nat. Biomed. Eng. 5, 737–748 (2021).

    CAS  PubMed  Google Scholar 

  10. Kim, J. et al. A skin‐interfaced, miniaturized microfluidic analysis and delivery system for colorimetric measurements of nutrients in sweat and supply of vitamins through the skin. Adv. Sci. 9, 2103331 (2022).

    CAS  Google Scholar 

  11. Wang, M. et al. A wearable electrochemical biosensor for the monitoring of metabolites and nutrients. Nat. Biomed. Eng. 6, 1225–1235 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Andersson, A., Chen, Q., Groop, L., Bülow, L. & Xie, B. Continuous and simultaneous determination of venous blood metabolites. Talanta 171, 270–274 (2017).

    CAS  PubMed  Google Scholar 

  13. Park, S. M. et al. A mountable toilet system for personalized health monitoring via the analysis of excreta. Nat. Biomed. Eng. 4, 624–635 (2020).

    PubMed  PubMed Central  Google Scholar 

  14. Chu, M. X. et al. Soft contact lens biosensor for in situ monitoring of tear glucose as non-invasive blood sugar assessment. Talanta 83, 960–965 (2011).

    CAS  PubMed  Google Scholar 

  15. Jin, H., Huynh, T. P. & Haick, H. Self-healable sensors based nanoparticles for detecting physiological markers via skin and breath: toward disease prevention via wearable devices. Nano Lett. 16, 4194–4202 (2016).

    CAS  PubMed  Google Scholar 

  16. Kahn, N., Lavie, O., Paz, M., Segev, Y. & Haick, H. Dynamic nanoparticle-based flexible sensors: diagnosis of ovarian carcinoma from exhaled breath. Nano Lett. 15, 7023–7028 (2015).

    PubMed  Google Scholar 

  17. Ledger, P. W. Skin biological issues in electrically enhanced transdermal delivery. Adv. Drug Deliv. Rev. 9, 289–307 (1992).

    CAS  Google Scholar 

  18. Guffey, J. S., Rutherford, M. J., Ayne, W. & Phillips, C. Skin pH changes associated with iontophoresis. J. Orthop. Sports Phys. Ther. 29, 656–660 (1999).

    CAS  PubMed  Google Scholar 

  19. Roustit, M., Blaise, S. & Cracowski, J.-L. Trials and tribulations of skin iontophoresis in therapeutics. Br. J. Clin. Pharm. 77, 63–71 (2014).

    CAS  Google Scholar 

  20. Carson, J. A. S. et al. Dietary cholesterol and cardiovascular risk: a science advisory from the American Heart Association. Circulation 141, e39–e53 (2020).

    PubMed  Google Scholar 

  21. Pappas, A. Epidermal surface lipids. Dermatoendocrinol 1, 72–76 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Attanà, P. et al. Lactate and lactate clearance in acute cardiac care patients. Eur. Heart J. Acute Cardiovasc Care 1, 115–121 (2012).

    PubMed  PubMed Central  Google Scholar 

  23. Cunningham, D. D. & Young, D. F. Measurements of glucose on the skin surface, in stratum corneum and in transcutaneous extracts: implications for physiological sampling. Clin. Chem. Lab. Med. 41, 1224–1228 (2003).

    CAS  PubMed  Google Scholar 

  24. Rivnay, J. et al. Structural control of mixed ionic and electronic transport in conducting polymers. Nat. Commun. 7, 11287 (2016).

    PubMed  PubMed Central  Google Scholar 

  25. Lee, I., Kim, G. W., Yang, M. & Kim, T.-S. Simultaneously enhancing the cohesion and electrical conductivity of PEDOT:PSS conductive polymer films using DMSO additives. ACS Appl. Mater. Interfaces 8, 302–310 (2016).

    PubMed  Google Scholar 

  26. Rathee, K., Dhull, V., Dhull, R. & Singh, S. Biosensors based on electrochemical lactate detection: a comprehensive review. Biochem. Biophys. Rep. 5, 35–54 (2016).

    PubMed  Google Scholar 

  27. Pluen, A., Netti, P. A., Jain, R. K. & Berk, D. A. Diffusion of macromolecules in agarose gels: comparison of linear and globular configurations. Biophys. J. 77, 542–552 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang, Y., Xu, Z., Zhao, Y. & Zhang, X. Ab initio molecular dynamics simulation study of dissociation electron attachment to lactic acid and isomer. Sci. Rep. 9, 19532 (2019).

    PubMed  PubMed Central  Google Scholar 

  29. Liu, Y. et al. Soft and elastic hydrogel-based microelectronics for localized low-voltage neuromodulation. Nat. Biomed. Eng. 3, 58–68 (2019).

    CAS  PubMed  Google Scholar 

  30. Bianchi, M. et al. Scaling of capacitance of PEDOT:PSS: volume vs. area. J. Mater. Chem. C 8, 11252–11262 (2020).

    CAS  Google Scholar 

  31. Driscoll, N. et al. MXene-infused bioelectronic interfaces for multiscale electrophysiology and stimulation. Sci. Transl. Med. 13, eabf8629 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Guo, M. et al. A highly stretchable, ultra-tough, remarkably tolerant, and robust self-healing glycerol-hydrogel for a dual-responsive soft actuator. J. Mater. Chem. A 7, 25969–25977 (2019).

    CAS  Google Scholar 

  33. Håkansson, A. et al. Effect of (3-glycidyloxypropyl)trimethoxysilane (GOPS) on the electrical properties of PEDOT:PSS films. J. Polym. Sci. B 55, 814–820 (2017).

    Google Scholar 

  34. Li, L. H., Dutkiewicz, E. P., Huang, Y. C., Zhou, H. B. & Hsu, C. C. Analytical methods for cholesterol quantification. J. Food Drug Anal. 27, 375–386 (2019).

    CAS  PubMed  Google Scholar 

  35. Zhang, W., Guo, C., Jiang, K., Ying, M. & Hu, X. Quantification of lactate from various metabolic pathways and quantification issues of lactate isotopologues and isotopmers. Sci. Rep. 7, 8489 (2017).

    PubMed  PubMed Central  Google Scholar 

  36. Kim, D.-H. et al. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat. Mater. 9, 511–517 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang, S. et al. On-skin ultrathin and stretchable multifunctional sensor for smart healthcare wearables. npj Flex. Electron. 6, 11 (2022).

    CAS  Google Scholar 

  38. Wang, C., Yokota, T. & Someya, T. Natural biopolymer-based biocompatible conductors for stretchable bioelectronics. Chem. Rev. 121, 2109–2146 (2021).

    CAS  PubMed  Google Scholar 

  39. Lee, Y.-Y. et al. Growth mechanism of strain-dependent morphological change in PEDOT:PSS films. Sci. Rep. 6, 25332 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Lademann, J., Jacobi, U., Surber, C., Weigmann, H.-J. & Fluhr, J. W. The tape stripping procedure—evaluation of some critical parameters. Eur. J. Pharm. Biopharm. 72, 317–323 (2009).

    CAS  PubMed  Google Scholar 

  41. Sjövall, P. et al. Imaging the distribution of skin lipids and topically applied compounds in human skin using mass spectrometry. Sci. Rep. 8, 16683 (2018).

    PubMed  PubMed Central  Google Scholar 

  42. Petersen, L. J. Interstitial lactate levels in human skin at rest and during an oral glucose load: a microdialysis study. Clin. Physiol. 19, 246–250 (1999).

    CAS  PubMed  Google Scholar 

  43. Chen, T., Buckley, M., Cohen, I., Bonassar, L. & Awad, H. A. Insights into interstitial flow, shear stress, and mass transport effects on ECM heterogeneity in bioreactor-cultivated engineered cartilage hydrogels. Biomech. Model Mechanobiol. 11, 689–702 (2012).

    PubMed  Google Scholar 

  44. Trapani, L., Segatto, M. & Pallottini, V. Regulation and deregulation of cholesterol homeostasis: the liver as a metabolic “power station”. World J. Hepatol. 4, 184 (2012).

    PubMed  PubMed Central  Google Scholar 

  45. Wu-Pong, S., Elias, P. M. & Feingold, K. R. Influence of altered serum cholesterol levels and fasting on cutaneous cholesterol synthesis. J. Invest. Dermatol. 102, 799–802 (1994).

    CAS  PubMed  Google Scholar 

  46. Feneberg, R. et al. Synchronous fluctuations of blood insulin and lactate concentrations in humans. J. Clin. Endocrinol. Metab. 84, 220–227 (1999).

    CAS  PubMed  Google Scholar 

  47. Lian, X. et al. Enzyme–MOF (metal–organic framework) composites. Chem. Soc. Rev. 46, 3386–3401 (2017).

    CAS  PubMed  Google Scholar 

  48. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the AME Programmatic Cyber-Physiochemical Interfaces (A18A1b0045 to L.Y.), the MTC Programmatic ‘BLISS’ (M24M9b0013 to X.T.Z., L.Y. and Yuxin Liu), the Singapore National Research Foundation Fellowship (NRF-NRFF15-2023-0011 to L.Y.), the A*STAR Central Research Fund (to L.Y.), a National University of Singapore Presidential Young Professorship Award (22-4974-A0003 to Yuxin Liu), an Advanced Research and Technology Innovation Centre (ARTIC) grant (HFM-RP6 to Yuxin Liu), iHealthtech Other Operating Expenses (OOE) funding (to Yuxin Liu), Wellcome Leap’s Dynamic Resilience Program jointly funded by Temasek Trust (to H.L., Z.L. and Yuxin Liu), and an MOE AcRF Tier 1 grant (22-5402-A0001-0 to Yuxin Liu).

Author information

Authors and Affiliations

Authors

Contributions

R.T.A. and Yuxin Liu conceived and designed the project. R.T.A., S.C.L.T., A.S., W.P.G., S.L.T. and Yuxin Liu carried out the experiments. L.K. carried out experiments with supervision from P.C. R.T.A., S.C.L.T., A.S., X.T.Z., Y.Y., L.Y. and Yuxin Liu discussed and analysed data. R.T.A., W.P.G., C.J. and Yuxin Liu fabricated the sensor patches. R.T.A., A.S., S.C.L.T., X.C., L.Y. and Yuxin Liu designed and conducted the human study. Yin Liu, F.Y.L., Y.C.A., H.L. and Z.L. conducted the computer modelling of the sensor electrochemical kinetics. R.T.A. and W.Y. prepared the figures. R.T.A. and Yuxin Liu wrote the paper. All authors commented on the paper. L.Y. and Yuxin Liu revised the paper and supervised the work.

Corresponding authors

Correspondence to Le Yang or Yuxin Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Sheng Xu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–45, Notes, Table 1, Video Caption 1 and References.

Reporting Summary

Supplementary Video 1

In situ real-time detection of solid-state lactate using SEB sensor.

Source data

Source Data Fig. 2

Processed data for all graphs shown in main text Fig. 2.

Source Data Fig. 3

Processed data for all graphs shown in main text Fig. 3.

Source Data Fig. 4

Processed data for all graphs shown in main text Fig. 4.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arwani, R.T., Tan, S.C.L., Sundarapandi, A. et al. Stretchable ionic–electronic bilayer hydrogel electronics enable in situ detection of solid-state epidermal biomarkers. Nat. Mater. (2024). https://doi.org/10.1038/s41563-024-01918-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41563-024-01918-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing