Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

MXenes with ordered triatomic-layer borate polyanion terminations

Abstract

Surface terminations profoundly influence the intrinsic properties of MXenes, but existing terminations are limited to monoatomic layers or simple groups, showing disordered arrangements and inferior stability. Here we present the synthesis of MXenes with triatomic-layer borate polyanion terminations (OBO terminations) through a flux-assisted eutectic molten etching approach. During the synthesis, Lewis acidic salts act as the etching agent to obtain the MXene backbone, while borax generates BO2 species, which cap the MXene surface with an O–B–O configuration. In contrast to conventional chlorine/oxygen-terminated Nb2C with localized charge transport, OBO-terminated Nb2C features band transport described by the Drude model, exhibiting a 15-fold increase in electrical conductivity and a 10-fold improvement in charge mobility at the d.c. limit. This transition is attributed to surface ordering that effectively mitigates charge carrier backscattering and trapping. Additionally, OBO terminations provide Ti3C2 MXene with substantially enriched Li+-hosting sites and thereby a large charge-storage capacity of 420 mAh g−1. Our findings illustrate the potential of intricate termination configurations in MXenes and their applications for (opto)electronics and energy storage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Synthesis of OBO-MXenes by the flux-assisted eutectic molten etching approach.
Fig. 2: Synthesis mechanism and characterizations of OBO-MXenes.
Fig. 3: Structural characterizations of OBO-MXenes.
Fig. 4: Charge-transport properties of OBO-MXenes.
Fig. 5: Charge-storage properties of OBO-Ti3C2.

Similar content being viewed by others

Data availability

All data are available in the main text or the Supplementary Information. Source data are provided with this paper.

References

  1. Anasori, B., Lukatskaya, M. R. & Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16098 (2017).

    Article  CAS  Google Scholar 

  2. Zhao, T. et al. Ultrathin MXene assemblies approach the intrinsic absorption limit in the 0.5–10 THz band. Nat. Photonics 17, 622–628 (2023).

    Article  CAS  Google Scholar 

  3. Zheng, W. et al. Band transport by large Fröhlich polarons in MXenes. Nat. Phys. 18, 544–550 (2022).

    Article  CAS  Google Scholar 

  4. Liu, S. et al. Hydrogen storage in incompletely etched multilayer Ti2CTx at room temperature. Nat. Nanotechnol. 16, 331–336 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. Xie, X. et al. Microstructure and surface control of MXene films for water purification. Nat. Sustain. 2, 856–862 (2019).

    Article  Google Scholar 

  6. Mohammadi, A. V., Rosen, J. & Gogotsi, Y. The world of two-dimensional carbides and nitrides (MXenes). Science 372, eabf1581 (2021).

    Article  Google Scholar 

  7. Faraji, M. et al. Surface modification of titanium carbide MXene monolayers (Ti2C and Ti3C2) via chalcogenide and halogenide atoms. Phys. Chem. Chem. Phys. 23, 15319–15328 (2021).

    Article  CAS  PubMed  Google Scholar 

  8. Hart, J. L. et al. Control of MXenes’ electronic properties through termination and intercalation. Nat. Commun. 10, 522 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kamysbayev, V. et al. Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes. Science 369, 979–983 (2020).

    Article  CAS  PubMed  Google Scholar 

  10. Li, Y. et al. A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nat. Mater. 19, 894–899 (2020).

    Article  CAS  PubMed  Google Scholar 

  11. Li, M. et al. Halogenated Ti3C2 MXenes with electrochemically active terminals for high-performance zinc ion batteries. ACS Nano 15, 1077–1085 (2021).

    Article  CAS  PubMed  Google Scholar 

  12. Li, M. et al. Element replacement approach by reaction with Lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes. J. Am. Chem. Soc. 141, 4730–4737 (2019).

    Article  CAS  PubMed  Google Scholar 

  13. Ding, H. et al. Chemical scissor-mediated structural editing of layered transition metal carbides. Science 379, 1130–1135 (2023).

    Article  CAS  PubMed  Google Scholar 

  14. Wang, C. et al. HCl-based hydrothermal etching strategy toward fluoride-free MXenes. Adv. Mater. 33, 2101015 (2021).

    Article  CAS  Google Scholar 

  15. Li, T. et al. Fluorine-free synthesis of high-purity Ti3C2Tx (T=OH, O) via alkali treatment. Angew. Chemie Int. Ed. 57, 6115–6119 (2018).

    Article  CAS  Google Scholar 

  16. Yang, S. et al. Fluoride-free synthesis of two-dimensional titanium carbide (MXene) using a binary aqueous system. Angew. Chem. Int. Ed. 57, 15491–15495 (2018).

    Article  CAS  Google Scholar 

  17. Shi, H. et al. Ambient-stable two-dimensional titanium carbide (MXene) enabled by iodine etching. Angew. Chem. Int. Ed. 60, 8689–8693 (2021).

    Article  CAS  Google Scholar 

  18. Lai, S. et al. Surface group modification and carrier transport properties of layered transition metal carbides (Ti2CTx, T: –OH, –F and –O). Nanoscale 7, 19390–19396 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Saha, A. et al. Enhancing the energy storage capabilities of Ti3C2Tx MXene electrodes by atomic surface reduction. Adv. Funct. Mater. 31, 2106294 (2021).

    Article  CAS  Google Scholar 

  20. Zhou, B., Sun, Z., Yao, Y. & Pan, Y. Correlations between 11B NMR parameters and structural characters in borate and borosilicate minerals investigated by high-resolution MAS NMR and ab initio calculations. Phys. Chem. Miner. 39, 363–372 (2012).

    Article  CAS  Google Scholar 

  21. Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Michałowski, P. P. et al. Oxycarbide MXenes and MAX phases identification using monoatomic layer-by-layer analysis with ultralow-energy secondary-ion mass spectrometry. Nat. Nanotechnol. 17, 1192–1197 (2022).

    Article  PubMed  Google Scholar 

  23. Toby, B. H. & Von Dreele, R. B. GSAS-II: the genesis of a modern open-source all purpose crystallography software package. J. Appl. Crystallogr. 46, 544–549 (2013).

    Article  CAS  Google Scholar 

  24. Halim, J. et al. Variable range hopping and thermally activated transport in molybdenum-based MXenes. Phys. Rev. B 98, 104202 (2018).

    Article  CAS  Google Scholar 

  25. Němec, H., Ǩuel, P. & Sundström, V. Charge transport in nanostructured materials for solar energy conversion studied by time-resolved terahertz spectroscopy. J. Photochem. Photobiol. A 215, 123–139 (2010).

    Article  Google Scholar 

  26. Ulbricht, R., Hendry, E., Shan, J., Heinz, T. F. & Bonn, M. Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy. Rev. Mod. Phys. 83, 543–586 (2011).

    Article  CAS  Google Scholar 

  27. Dong, R. et al. High-mobility band-like charge transport in a semiconducting two-dimensional metal–organic framework. Nat. Mater. 17, 1027–1032 (2018).

    Article  CAS  PubMed  Google Scholar 

  28. Cocker, T. L. et al. Microscopic origin of the Drude–Smith model. Phys. Rev. B 96, 205439 (2017).

    Article  Google Scholar 

  29. Zheng, W., Bonn, M. & Wang, H. I. Photoconductivity multiplication in semiconducting few-layer MoTe2. Nano Lett. 20, 5807–5813 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang, X. et al. Influences from solvents on charge storage in titanium carbide MXenes. Nat. Energy 4, 241–248 (2019).

    Article  CAS  Google Scholar 

  31. Wang, D. et al. Direct synthesis and chemical vapor deposition of 2D carbide and nitride MXenes. Science 379, 1242–1247 (2023).

    Article  CAS  PubMed  Google Scholar 

  32. Zhou, C. et al. Hybrid organic–inorganic two-dimensional metal carbide MXenes with amido- and imido-terminated surfaces. Nat. Chem. 15, 1722–1729 (2023).

    Article  CAS  PubMed  Google Scholar 

  33. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  34. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  35. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  PubMed  Google Scholar 

  36. Grimme, S. Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Limas, N. G. & Manz, T. A. Introducing DDEC6 atomic population analysis: part 4. Efficient parallel computation of net atomic charges, atomic spin moments, bond orders, and more. RSC Adv. 8, 2678–2707 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Henkelman, G. & Jónsson, H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 113, 9978–9985 (2000).

    Article  CAS  Google Scholar 

  39. Henkelman, G., Uberuaga, B. P. & Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge support from European Union’s Horizon 2020 Research and Innovation programme (GrapheneCore3 881603, LIGHT-CAP 101017821, GREENCAP 101091572, X.F.), M-ERA.NET and Sächsisches Staatsministerium für Wissenschaft und Kunst (HYSUCAP 100478697, E.Z., T.Š., X.F.), and the German Research Foundation (DFG, CRC1415, grant number 417590517, E.B., M.Y., X.F.). TAČR EPSILON project (number TH71020004, T.Š.), GAČR project (number 23-07617 S, T.Š.) and CzechNanoLab project (number LM2023051, T.Š.) funded by MEYS CR are gratefully acknowledged for the financial support of the measurements in the CEITEC Nano Research Infrastructure. D.B. acknowledges support of computational resources in Mons by the FNRS ‘Consortium des Equipements de Calcul Intensif−CECI’ programme (grant number 2.5020.11) and by the Walloon Region (ZENOBE Tier-1 supercomputer, 1117545). D.L. acknowledges support from the China Scholarships Council (CSC). P.P.M. was supported by the National Science Centre (project number 2018/31/D/ST5/00399) and the National Centre for Research and Development (project number LIDER/8/0055/L-12/20/NCBR/2021). The authors acknowledge the use of the facilities at the Dresden Center for Nanoanalysis (DCN), Technische Universität Dresden, the Gemeinsamen Wissenschaftskonferenz (GWK) support for providing computing time through the Center for Information Services and High-Performance Computing (ZIH) at TU Dresden, and beam-time allocation at beamline P65 of the PETRA III synchrotron (DESY, Hamburg, Germany) and beamline BL04 of the ALBA synchrotron (Barcelona, Spain). We specially thank S. Voborný, P. Jadhao and P. Chen for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

M.Y. and X.F. conceived and supervised the research. D.L. performed most of the experiments and analysis. W.Z., H.I.W. and M.B. performed the THz spectra test and analysis. S.M.G. and D.B. implemented the theoretical calculations. K.S., M.H., M.D., E.Z. and T.Š. conducted the transmission electron microscopy test and analysis. J.P. performed the XPS test. P.P.M. carried out the SIMS test. N.L. and E.B. conducted the solid-state NMR test. Z.L. and S.Z. carried out the electrical conductivity test. J.Z. assisted with XAS experiment. D.S. assisted with electrochemical experiments. D.L. prepared the paper under the supervision of M.Y. and X.F. All the authors read and revised the paper.

Corresponding authors

Correspondence to Hai I. Wang, David Beljonne, Minghao Yu or Xinliang Feng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Michel Barsoum, Qing Huang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–41 and Tables 1–9.

Source data

Source Data Fig. 2

Analysed data used to plot Fig. 2b–h.

Source Data Fig. 3

Analysed data used to plot Fig. 3e–h.

Source Data Fig. 4

Analysed data used to plot Fig. 4a–f.

Source Data Fig. 5

Analysed data used to plot Fig. 5a,b,d–f.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Zheng, W., Gali, S.M. et al. MXenes with ordered triatomic-layer borate polyanion terminations. Nat. Mater. (2024). https://doi.org/10.1038/s41563-024-01911-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41563-024-01911-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing