Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Evidence for electron–hole crystals in a Mott insulator

Abstract

The coexistence of correlated electron and hole crystals enables the realization of quantum excitonic states, capable of hosting counterflow superfluidity and topological orders with long-range quantum entanglement. Here we report evidence for imbalanced electron–hole crystals in a doped Mott insulator, namely, α-RuCl3, through gate-tunable non-invasive van der Waals doping from graphene. Real-space imaging via scanning tunnelling microscopy reveals two distinct charge orderings at the lower and upper Hubbard band energies, whose origin is attributed to the correlation-driven honeycomb hole crystal composed of hole-rich Ru sites and rotational-symmetry-breaking paired electron crystal composed of electron-rich Ru–Ru bonds, respectively. Moreover, a gate-induced transition of electron–hole crystals is directly visualized, further corroborating their nature as correlation-driven charge crystals. The realization and atom-resolved visualization of imbalanced electron–hole crystals in a doped Mott insulator opens new doors in the search for correlated bosonic states within strongly correlated materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The vdW heterostructure of G/α-RuCl3 for the STM study.
Fig. 2: Electronic structure and bias-dependent STM images of G/α-RuCl3.
Fig. 3: Two distinct charge orderings at LHB and UHB energies.
Fig. 4: Carrier-density-dependent UHB charge ordering.

Similar content being viewed by others

Data availability

Source data are provided with this paper. Any additional material is available from the corresponding authors upon reasonable request.

References

  1. Li, H. et al. Imaging two-dimensional generalized Wigner crystals. Nature 597, 650–654 (2021).

    Article  CAS  PubMed  Google Scholar 

  2. Smoleński, T. et al. Signatures of Wigner crystal of electrons in a monolayer semiconductor. Nature 595, 53–57 (2021).

    Article  PubMed  Google Scholar 

  3. Regan, E. C. et al. Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices. Nature 579, 359–363 (2020).

    Article  CAS  PubMed  Google Scholar 

  4. Imada, M., Fujimori, A. & Tokura, Y. Metal-insulator transitions. Rev. Mod. Phys. 70, 1039 (1998).

    Article  CAS  Google Scholar 

  5. Li, Q. et al. Tunable quantum criticalities in an isospin extended Hubbard model simulator. Nature 609, 479–484 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Knörzer, J. et al. Wigner crystals in two-dimensional transition-metal dichalcogenides: spin physics and readout. Phys. Rev. B 101, 125101 (2020).

    Article  Google Scholar 

  7. Chen, Y. P. Pinned bilayer Wigner crystals with pseudospin magnetism. Phys. Rev. B 73, 115314 (2006).

    Article  Google Scholar 

  8. Wang, R., Sedrakyan, T. A., Wang, B., Du, L. & Du, R.-R. Excitonic topological order in imbalanced electron–hole bilayers. Nature 619, 57–62 (2023).

    Article  CAS  PubMed  Google Scholar 

  9. Tutuc, E., Shayegan, M. & Huse, D. Counterflow measurements in strongly correlated GaAs hole bilayers: evidence for electron-hole pairing. Phys. Rev. Lett. 93, 036802 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Kellogg, M., Eisenstein, J., Pfeiffer, L. & West, K. Vanishing Hall resistance at high magnetic field in a double-layer two-dimensional electron system. Phys. Rev. Lett. 93, 036801 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Wen, X.-G. Choreographed entanglement dances: topological states of quantum matter. Science 363, eaal3099 (2019).

    Article  CAS  PubMed  Google Scholar 

  12. Zhou, Y. et al. Bilayer Wigner crystals in a transition metal dichalcogenide heterostructure. Nature 595, 48–52 (2021).

    Article  CAS  PubMed  Google Scholar 

  13. Zeng, Y. et al. Exciton density waves in Coulomb-coupled dual moiré lattices. Nat. Mater. 22, 175–179 (2023).

    Article  CAS  PubMed  Google Scholar 

  14. Song, Y. et al. Signatures of the exciton gas phase and its condensation in monolayer 1T-ZrTe2. Nat. Commun. 14, 1116 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Plumb, K. et al. α−RuCl3: a spin-orbit assisted Mott insulator on a honeycomb lattice. Phys. Rev. B 90, 041112 (2014).

    Article  CAS  Google Scholar 

  16. Kim, H.-S., Catuneanu, A. & Kee, H.-Y. Kitaev magnetism in honeycomb RuCl3 with intermediate spin-orbit coupling. Phys. Rev. B 91, 241110 (2015).

    Article  Google Scholar 

  17. Chen, Y. et al. Strong correlations and orbital texture in single-layer 1T-TaSe2. Nat. Phys. 16, 218–224 (2020).

    Article  CAS  Google Scholar 

  18. Kim, B. et al. Novel Jeff = 1/2 Mott state induced by relativistic spin-orbit coupling in Sr2IrO4. Phys. Rev. Lett. 101, 076402 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Kuneš, J. Excitonic condensation in systems of strongly correlated electrons. J. Phys. Condens. Matter 27, 333201 (2015).

    Article  PubMed  Google Scholar 

  20. Banerjee, A. et al. Proximate Kitaev quantum spin liquid behaviour in a honeycomb magnet. Nat. Mater. 15, 733–740 (2016).

    Article  CAS  PubMed  Google Scholar 

  21. Banerjee, A. et al. Neutron scattering in the proximate quantum spin liquid α-RuCl3. Science 356, 1055–1059 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. Kasahara, Y. et al. Majorana quantization and half-integer thermal quantum Hall effect in a Kitaev spin liquid. Nature 559, 227–231 (2018).

    Article  CAS  PubMed  Google Scholar 

  23. Yokoi, T. et al. Half-integer quantized anomalous thermal Hall effect in the Kitaev material candidate α-RuCl3. Science 373, 568–572 (2021).

    Article  CAS  PubMed  Google Scholar 

  24. Jackeli, G. & Khaliullin, G. Mott insulators in the strong spin-orbit coupling limit: from Heisenberg to a quantum compass and Kitaev models. Phys. Rev. Lett. 102, 017205 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Cao, H. B. et al. Low-temperature crystal and magnetic structure of α−RuCl3. Phys. Rev. B 93, 134423 (2016).

    Article  Google Scholar 

  26. Rojas, S. & Spinolo, G. Hall effect in α-RuCl3. Solid State Commun. 48, 349–351 (1983).

    Article  CAS  Google Scholar 

  27. Binotto, L., Pollini, I. & Spinolo, G. Optical and transport properties of the magnetic semiconductor α‐RuCl3. Phys. Status Solidi B 44, 245–252 (1971).

    Article  CAS  Google Scholar 

  28. Zhou, X. et al. Angle-resolved photoemission study of the Kitaev candidate α−RuCl3. Phys. Rev. B 94, 161106 (2016).

    Article  Google Scholar 

  29. Sandilands, L. J. et al. Spin-orbit excitations and electronic structure of the putative Kitaev magnet α−RuCl3. Phys. Rev. B 93, 075144 (2016).

    Article  Google Scholar 

  30. Wang, Z. et al. Direct observation of the Mottness and pd orbital hybridization in epitaxial monolayer α-RuCl3. Nanoscale 14, 11745–11749 (2022).

    Article  CAS  PubMed  Google Scholar 

  31. Wong, D. et al. Characterization and manipulation of individual defects in insulating hexagonal boron nitride using scanning tunnelling microscopy. Nat. Nanotechnol. 10, 949–953 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. Qiu, Z. et al. Giant gate-tunable bandgap renormalization and excitonic effects in a 2D semiconductor. Sci. Adv. 5, eaaw2347 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Qiu, Z. et al. Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nat. Commun. 12, 70 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Battisti, I. et al. Universality of pseudogap and emergent order in lightly doped Mott insulators. Nat. Phys. 13, 21–25 (2017).

    Article  CAS  Google Scholar 

  35. Zhao, H. et al. Imaging antiferromagnetic domain fluctuations and the effect of atomic scale disorder in a doped spin-orbit Mott insulator. Sci. Adv. 7, eabi6468 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang, Y. et al. Giant phonon-induced conductance in scanning tunnelling spectroscopy of gate-tunable graphene. Nat. Phys. 4, 627–630 (2008).

    Article  Google Scholar 

  37. Gerber, E., Yao, Y., Arias, T. A. & Kim, E.-A. Ab initio mismatched interface theory of graphene on α−RuCl3: doping and magnetism. Phys. Rev. Lett. 124, 106804 (2020).

    Article  CAS  PubMed  Google Scholar 

  38. Biswas, S., Li, Y., Winter, S. M., Knolle, J. & Valentí, R. Electronic properties of α−RuCl3 in proximity to graphene. Phys. Rev. Lett. 123, 237201 (2019).

    Article  CAS  PubMed  Google Scholar 

  39. Li, T. et al. Charge-order-enhanced capacitance in semiconductor moiré superlattices. Nat. Nanotechnol. 16, 1068–1072 (2021).

    Article  CAS  PubMed  Google Scholar 

  40. Sandilands, L. J., Tian, Y., Plumb, K. W., Kim, Y.-J. & Burch, K. S. Scattering continuum and possible fractionalized excitations in α−RuCl3. Phys. Rev. Lett. 114, 147201 (2015).

    Article  PubMed  Google Scholar 

  41. Telychko, M. et al. Achieving high-quality single-atom nitrogen doping of graphene/SiC (0001) by ion implantation and subsequent thermal stabilization. ACS Nano 8, 7318–7324 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. Dombrowski, D. et al. Energy-dependent chirality effects in quasifree-standing graphene. Phy. Rev. Lett. 118, 116401 (2017).

    Article  Google Scholar 

  43. Rizzo, D. J. et al. Charge-transfer plasmon polaritons at graphene/α-RuCl3 interfaces. Nano Lett. 20, 8438–8445 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mross, D. F. & Senthil, T. Charge Friedel oscillations in a Mott insulator. Phys. Rev. B 84, 041102 (2011).

    Article  Google Scholar 

  45. Petersen, L. et al. Direct imaging of the two-dimensional Fermi contour: Fourier-transform STM. Phys. Rev. B 57, R6858 (1998).

    Article  CAS  Google Scholar 

  46. Ruan, W. et al. Evidence for quantum spin liquid behaviour in single-layer 1T-TaSe2 from scanning tunnelling microscopy. Nat. Phys. 17, 1154–1161 (2021).

    Article  CAS  Google Scholar 

  47. Zhu, Z., Sheng, D. N. & Fu, L. Spin-orbital density wave and a Mott insulator in a two-orbital Hubbard model on a honeycomb lattice. Phys. Rev. Lett. 123, 087602 (2019).

    Article  CAS  PubMed  Google Scholar 

  48. Xiong, R. et al. Correlated insulator of excitons in WSe2/WS2 moiré superlattices. Science 380, 860–864 (2023).

    Article  CAS  PubMed  Google Scholar 

  49. Zhang, Y.-H. Doping a Mott insulator with excitons in moiré bilayer: fractional superfluid, neutral Fermi surface and Mott transition. Phys. Rev. B 106, 195120 (2022).

    Article  CAS  Google Scholar 

  50. Zhang, Y.-H., Sheng, D. & Vishwanath, A. SU(4) chiral spin liquid, exciton supersolid, and electric detection in moiré bilayers. Phys. Rev. Lett. 127, 247701 (2021).

    Article  CAS  PubMed  Google Scholar 

  51. Jain, A. et al. Minimizing residues and strain in 2D materials transferred from PDMS. Nanotechnology 29, 265203 (2018).

    Article  PubMed  Google Scholar 

  52. Enkovaara, J. E. et al. Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method. J. Phys. Condens. Matter 22, 253202 (2010).

    Article  CAS  PubMed  Google Scholar 

  53. Olsen, T. Designing in-plane heterostructures of quantum spin Hall insulators from first principles: 1T′−MoS2 with adsorbates. Phys. Rev. B 94, 235106 (2016).

    Article  Google Scholar 

  54. González-Herrero, H. C. et al. Graphene tunable transparency to tunneling electrons: a direct tool to measure the local coupling. ACS Nano 10, 5131–5144 (2016).

    Article  PubMed  Google Scholar 

  55. Drummond, N. & Needs, R. Phase diagram of the low-density two-dimensional homogeneous electron gas. Phys. Rev. Lett. 102, 126402 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Mashhadi, S. et al. Spin-split band hybridization in graphene proximitized with α-RuCl3 nanosheets. Nano Lett. 19, 4659–4665 (2019).

    Article  CAS  PubMed  Google Scholar 

  57. Dressel, M. Ordering phenomena in quasi-one-dimensional organic conductors. Naturwissenschaften 94, 527–541 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Monceau, P., Nad, F. Y. & Brazovskii, S. Ferroelectric Mott-Hubbard phase of organic (TMTTF)2X conductors. Phys. Rev. Lett. 86, 4080 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Seo, H., Ogata, M. & Fukuyama, H. Aspects of the Verwey transition in magnetite. Phys. Rev. B 65, 085107 (2002).

    Article  Google Scholar 

  60. Kohsaka, Y. et al. An intrinsic bond-centered electronic glass with unidirectional domains in underdoped cuprates. Science 315, 1380–1385 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Dayal, S., Clay, R., Li, H. & Mazumdar, S. Paired electron crystal: order from frustration in the quarter-filled band. Phys. Rev. B 83, 245106 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

J. Lu acknowledges support from Ministry of Education grants (MOE-T2EP50121-0008, MOE-T2EP10221-0005, MOE-T2EP10123-0004) and Agency for Science, Technology and Research (A*STAR) under its AME IRG Grant (M21K2c0113). K.S.N. acknowledges support from the Ministry of Education, Singapore (Research Centre of Excellence award to the Institute for Functional Intelligent Materials (I-FIM) project no. EDUNC-33-18-279-V12), and the Royal Society, UK (grant no. RSRP\R\190000). M.K. acknowledges support from the Russian Science Foundation (grant no. 21-79-20225) and Vladimir Potanin (through Brain and Consciousness Research Center).

Author information

Authors and Affiliations

Authors

Contributions

J. Lu supervised the project and organized the collaborations. Z.Q. performed the STM measurements and analysed the results. Z.Q., Y.H., K.S.N., J. Lu and A.H.C.N. devised the model to account for the two charge orderings. Z.C., M.K. and K.S.N. contributed to the sample and device fabrication. Y.H. and H.F. assisted in the STM measurements. J. Li, L.L. and P.L. helped in preparing the sample. K.N., S.Y.Q. and A.R. calculated the electronic band structure and charge transfer. T.O. calculated the electronic band structure and the Fermi surface contour. X.G., S.A. and A.H.C.N. contributed to the discussion of the theoretical model for strongly correlated α-RuCl3. M.T. helped with the N+ implantation. All authors contributed to the scientific discussion. Z.Q., K.S.N. and J. Lu co-wrote the manuscript with input from all authors.

Corresponding authors

Correspondence to Kostya S. Novoselov or Jiong Lu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–21 and Notes 1–9.

Supplementary Data

Statistical source data.

Source data

Source Data Fig. 4

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, Z., Han, Y., Noori, K. et al. Evidence for electron–hole crystals in a Mott insulator. Nat. Mater. (2024). https://doi.org/10.1038/s41563-024-01910-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41563-024-01910-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing