Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Elucidating chirality transfer in liquid crystals of viruses

Abstract

Chirality is ubiquitous in nature across all length scales, with major implications spanning fields from biology, chemistry and physics to materials science. How chirality propagates from nanoscale building blocks to meso- and macroscopic helical structures remains an open issue. Here, working with a canonical system of filamentous viruses, we demonstrate that their self-assembly into chiral liquid crystal phases quantitatively results from the interplay between two main mechanisms of chirality transfer: electrostatic interactions from the helical charge patterns on the virus surface, and fluctuation-based helical deformations leading to viral backbone helicity. Our experimental and theoretical approach provides a comprehensive framework for deciphering how chirality is hierarchically and quantitatively propagated across spatial scales. Our work highlights the ways in which supramolecular helicity may arise from subtle chiral contributions of opposite handedness that act either cooperatively or competitively, thus accounting for the multiplicity of chiral behaviours observed for nearly identical molecular systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structural chirality of filamentous viruses at various hierarchical scales, ranging from the asymmetry of Cα atoms of the amino acids of the major coat proteins p8, to the α-helical structure of these proteins and their helical arrangement on the virion surface.
Fig. 2: Atomistic representation of the semi-flexible M13 and stiff Y21M virions and pH dependence of their charge distribution calculated using Adaptive Poisson-Boltzmann Solver (APBS).
Fig. 3: Cholesteric to nematic crossover by decreasing charge fully accounted for by the electrostatic model in Y21M virus suspensions.
Fig. 4: Cholesteric ordering in sterically stabilized semi-flexible viruses and suprahelix model.
Fig. 5: Master curve of the cholesteric pitch P for semi-flexible viruses accounted for by the suprahelix model.

Similar content being viewed by others

Data availability

All the data supporting the findings of this study are included in the article and its Supplementary Information file. Source data are provided with this paper.

Code availability

The numerical codes used for molecular structure preparation and density functional calculations can be accessed via GitHub at https://github.com/mtortora/chiralDFT.

References

  1. Liu, M., Zhang, L. & Wang, T. Supramolecular chirality in self-assembled systems. Chem. Rev. 115, 7304–7397 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. Morrow, S. M., Bissette, A. J. & Fletcher, S. P. Transmission of chirality through space and across length scales. Nat. Nanotechnol. 12, 410–419 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. Nemati, A. et al. Chirality amplification by desymmetrization of chiral ligand-capped nanoparticles to nanorods quantified in soft condensed matter. Nat. Commun. 9, 3908 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Zhang, X. et al. Liquid crystal-templated chiral nanomaterials: from chiral plasmonics to circularly polarized luminescence. Light Sci. Appl. 11, 223 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sang, Y. & Liu, M. Hierarchical self-assembly into chiral nanostructures. Chem. Sci. 13, 633–656 (2022).

    Article  CAS  PubMed  Google Scholar 

  6. Kotov, N. A., Liz-Marzán, L. M. & Wang, Q. Chiral nanomaterials: evolving rapidly from concepts to applications. Mater. Adv. 3, 3677–3679 (2022).

    Article  Google Scholar 

  7. Mitov, M. Cholesteric liquid crystals with a broad light reflection band. Adv. Mater. 24, 6260–6276 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Bisoyi, H. K. & Li, Q. Liquid crystals: versatile self-organized smart soft materials. Chem. Rev. 122, 4887–4926 (2022).

    Article  CAS  PubMed  Google Scholar 

  9. Mitov, M. Cholesteric liquid crystals in living matter. Soft Matter 13, 4176–4209 (2017).

    Article  CAS  PubMed  Google Scholar 

  10. Reinitzer, F. Beiträge zur kenntniss des cholesterins. Monatshefte Chem. 9, 421–441 (1888).

    Article  Google Scholar 

  11. Livolant, F. & Leforestier, A. Condensed phases of DNA: structures and phase transitions. Prog. Polym. Sci. 21, 1115–1164 (1996).

    Article  CAS  Google Scholar 

  12. Zanchetta, G. et al. Right-handed double-helix ultrashort DNA yields chiral nematic phases with both right- and left-handed director twist. Proc. Natl Acad. Sci. USA 107, 17497–17502 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Siavashpouri, M. et al. Molecular engineering of chiral colloidal liquid crystals using DNA origami. Nat. Mater. 16, 849–856 (2017).

    Article  CAS  PubMed  Google Scholar 

  14. Dogic, Z. & Fraden, S. Cholesteric phase in virus suspensions. Langmuir 16, 7820–7824 (2000).

    Article  CAS  Google Scholar 

  15. Grelet, E. & Fraden, S. What is the origin of chirality in the cholesteric phase of virus suspensions? Phys. Rev. Lett. 90, 198302 (2003).

    Article  PubMed  Google Scholar 

  16. Tombolato, F., Ferrarini, A. & Grelet, E. Chiral nematic phase of suspensions of rodlike viruses: left-handed phase helicity from a right-handed molecular helix. Phys. Rev. Lett. 96, 258302 (2006).

    Article  PubMed  Google Scholar 

  17. Bagnani, M., Nyström, G., De Michele, C. & Mezzenga, R. Amyloid fibrils length controls shape and structure of nematic and cholesteric tactoids. ACS Nano 13, 591–600 (2019).

    Article  CAS  PubMed  Google Scholar 

  18. Belamie, E., Davidson, P. & Giraud-Guille, M. M. Structure and chirality of the nematic phase in α-chitin suspensions. J. Phys. Chem. B 108, 14991–15000 (2004).

    Article  CAS  Google Scholar 

  19. Araki, J. & Kuga, S. Effect of trace electrolyte on liquid crystal type of cellulose microcrystals. Langmuir 17, 4493–4496 (2001).

    Article  CAS  Google Scholar 

  20. Honorato-Rios, C. & Lagerwall, J. P. F. Interrogating helical nanorod self-assembly with fractionated cellulose nanocrystal suspensions. Commun. Mater. 1, 69 (2020).

    Article  Google Scholar 

  21. Parton, T. G. et al. Chiral self-assembly of cellulose nanocrystals is driven by crystallite bundles. Nat. Commun. 13, 2657 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Straley, J. P. Theory of piezoelectricity in nematic liquid crystals, and of the cholesteric ordering. Phys. Rev. A 14, 1835–1841 (1976).

    Article  CAS  Google Scholar 

  23. Harris, A. B., Kamien, R. D. & Lubensky, T. C. Molecular chirality and chiral parameters. Rev. Mod. Phys. 71, 1745–1757 (1999).

    Article  CAS  Google Scholar 

  24. Osipov, M. A. Theory for cholesteric ordering in lyotropic liquid crystals. Nuovo Cim. D 10, 1249–1262 (1988).

    Article  Google Scholar 

  25. Cherstvy, A. G. DNA cholesteric phases: the role of DNA molecular chirality and DNA electrostatic interactions. J. Phys. Chem. B 142, 12585–12595 (2008).

    Article  Google Scholar 

  26. Dussi, S. & Dijkstra, M. Entropy-driven formation of chiral nematic phases by computer simulations. Nat. Commun. 7, 11175 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tortora, M. M. C., Mishra, G., Prešern, D. & Doye, J. P. K. Chiral shape fluctuations and the origin of chirality in cholesteric phases of dna origamis. Sci. Adv. 6, eaaw8331 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dogic, Z. & Fraden, S. Soft Matter Vol. 2 (eds Gompper, G. & Schick, M.) (Wiley-VCH, 2006).

  29. Smith, G. P. & Petrenko, V. A. Phage display. Chem. Rev. 97, 391–410 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Marvin, D. A., Welsh, L. C., Symmons, M. F., Scott, W. R. P. & Straus, S. K. Molecular structure of fd (f1, M13) filamentous bacteriophage refined with respect to X-ray fibre diffraction and solid-state NMR data supports specific models of phage assembly at the bacterial membrane. J. Mol. Biol. 355, 294–309 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Lee, Y. J. et al. Fabricating genetically engineered high-power lithium-ion batteries using multiple virus genes. Science 324, 1051–1055 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Marvin, D. A., Symmons, M. F. & Straus, S. K. Structure and assembly of filamentous bacteriophages. Prog. Biophys. Mol. Biol. 114, 80–122 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. Gibaud, T. et al. Self-assembly through chiral control of interfacial tension. Nature 481, 348–351 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. Grelet, E. Hard-rod behavior in dense mesophases of semiflexible and rigid charged viruses. Phys. Rev. X 4, 021053 (2014).

    CAS  Google Scholar 

  35. Willis, B. et al. Biologically templated organic polymers with nanoscale order. Proc. Natl Acad. Sci. USA 105, 1416–1419 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chung, W.-J. et al. Biomimetic self-templating supramolecular structures. Nature 478, 364–368 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Barry, E. & Dogic, Z. A model liquid crystalline system based on rodlike viruses with variable chirality and persistence length. Soft Matter 5, 2563–2570 (2009).

    CAS  Google Scholar 

  38. Frezza, E., Ferrarini, A., Bindu Kolli, H., Giacometti, A. & Cinacchi, G. Left or right cholesterics? A matter of helix handedness and curliness. Phys. Chem. Chem. Phys. 16, 16225–16232 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. Dussi, S., Belli, S., van Roij, R. & Dijkstra, M. Cholesterics of colloidal helices: predicting the macroscopic pitch from the particle shape and thermodynamic state. J. Chem. Phys. 142, 074905 (2015).

    Article  PubMed  Google Scholar 

  40. Kornyshev, A. A., Leikin, S. & Malinin, S. V. Chiral electrostatic interaction and cholesteric liquid crystals of DNA. Eur. Phys. J. E 7, 83–93 (2002).

    Article  CAS  Google Scholar 

  41. Wensink, H. H. & Jackson, G. Generalized van der Waals theory for the twist elastic modulus and helical pitch of cholesterics. J. Chem. Phys. 130, 234911 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Zhang, C., Diorio, N., Lavrentovich, O. D. & Jákli, A. Helical nanofilaments of bent-core liquid crystals with a second twist. Nat. Commun. 5, 3302 (2014).

    Article  CAS  PubMed  Google Scholar 

  43. Oostenbrink, C., Villa, A., Mark, A. E. & Van Gunsteren, W. F. A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J. Comput. Chem. 25, 1656–1676 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Grelet, E. & Rana, R. From soft to hard rod behavior in liquid crystalline suspensions of sterically stabilized colloidal filamentous particles. Soft Matter 12, 4621–4627 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. Tang, J. & Fraden, S. Isotropic-cholesteric phase transition in colloidal suspensions of filamentous bacteriophage fd. Liq. Cryst. 19, 459–467 (1995).

    Article  CAS  Google Scholar 

  46. Narkevicius, A. et al. Controlling the self-assembly behavior of aqueous chitin nanocrystal suspensions. Biomacromolecules 20, 2830–2838 (2019).

    Article  CAS  PubMed  Google Scholar 

  47. Odijk, T. Pitch of a polymer cholesteric. J. Phys. Chem. 91, 6060–6062 (1987).

    Article  CAS  Google Scholar 

  48. Jurrus, E. et al. Improvements to the APBS biomolecular solvation software suite. Protein Sci. 27, 112–128 (2018).

    Article  CAS  PubMed  Google Scholar 

  49. Chen, Z. Y. Nematic ordering in semiflexible polymer chains. Macromolecules 26, 3419–3423 (1993).

    Article  CAS  Google Scholar 

  50. Morag, O., Sgourakis, N. G., Baker, D. & Goldbourt, A. The NMR-Rosetta capsid model of M13 bacteriophage reveals a quadrupled hydrophobic packing epitope. Proc. Natl Acad. Sci. USA 112, 971–976 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kishchenko, G., Batliwala, H. & Makowski, L. Structure of a foreign peptide displayed on the surface of bacteriophage M13. J. Mol. Biol. 241, 208–213 (1994).

    Article  CAS  PubMed  Google Scholar 

  52. Pouget, E., Grelet, E. & Lettinga, M. P. Dynamics in the smectic phase of stiff viral rods. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 84, 041704 (2011).

    Article  Google Scholar 

  53. Zimmermann, K., Hagedorn, H., Heucks, C. C., Hinrichsen, M. & Ludwig, H. The ionic properties of the filamentous bacteriophages Pfl and fd. J. Biol. Chem. 261, 1653–1655 (1986).

    Article  CAS  PubMed  Google Scholar 

  54. Zan, T. et al. Into the polymer brush regime through the “grafting-to” method: densely polymer-grafted rodlike viruses with an unusual nematic liquid crystal behavior. Soft Matter 12, 798–805 (2016).

    Article  CAS  PubMed  Google Scholar 

  55. Marsh, D. Elastic constants of polymer-grafted lipid membranes. Biophys. J. 81, 2154–2162 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Khalil, A. S. et al. Single M13 bacteriophage tethering and stretching. Proc. Natl Acad. Sci. USA 104, 4892–4897 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Tironi, I. G., Sperb, R., Smith, P. E. & van Gunsteren, W. F. A generalized reaction field method for molecular dynamics simulations. J. Chem. Phys. 102, 5451–5459 (1995).

    Article  CAS  Google Scholar 

  58. Olsson, M. H. M., Søndergaard, C. R., Rostkowski, M. & Jensen, J. H. PROPKA3: consistent treatment of internal and surface residues in empirical pKa predictions. J. Chem. Theory Comput. 7, 525–537 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Tortora, M. M. C. & Doye, J. P. K. Hierarchical bounding structures for efficient virial computations: towards a realistic molecular description of cholesterics. J. Chem. Phys. 147, 224504 (2017).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank H. Anop for the data of Extended Data Fig. 5 and A. Pope for help with Y21M sample preparation. We also acknowledge access to computing resources provided by the Pôle Scientifique de Modélisation Numérique of the ENS de Lyon.

Author information

Authors and Affiliations

Authors

Contributions

E.G. conceptualized the study, instigated the project, performed the experiments and wrote the paper with contributions from M.M.C.T.; M.M.C.T. implemented the numerical methods and carried out the calculations. Both authors developed the models, analysed the results, wrote the Supplementary Information and revised and edited the paper. Correspondence and requests for materials and data should be addressed to E.G. Queries regarding numerical details and computational data should be directed to M.M.C.T.

Corresponding authors

Correspondence to Eric Grelet or Maxime M. C. Tortora.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Torsten Hegmann, Jan Lagerwall and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Opposite handedness of the cholesteric helix for M13 and Y21M strains.

Determined by fluorescence microscopy in (a) PEGylated M13 suspension (pH 8.2, IS=110 mM) and (b) Y21M suspension (pH 8.2, IS=60 mM). A small fraction (1:105) of viruses are labelled with red or green fluorescent tags to indicate the orientation of the nematic director in each focal plane, as shown by arrows. Their rotation through the sample thickness Z reveals the handedness of the cholesteric helicity, which is found to be left-handed for M13 and M13-PEG and right-handed for Y21M strain. The periodicity of the cholesteric helix, or cholesteric pitch P, is also indicated for both virion strains, and its value is positive (negative) for right (left) handedness. Each image has a size of 50 μm x 50 μm.

Extended Data Fig. 2 Electrostatic dependence of the cholesteric pitch, P.

Measurements for Y21M (open symbols) and M13 (full symbols) for different ionic strengths IS at fixed pH 8 as a function of the respective virus concentration. The data of Y21M phages at pH 8 and IS = 110 mM are taken from Ref. 37. For both virions, P increases with increasing ionic strength, that is, with increasing the screening of electrostatic interactions. For each data set, the binodal concentrations of the isotropic-to-cholesteric transition corresponding to the stability limit of the isotropic phase, Ciso, are shown by a dotted line whose colour corresponds to the associated colour of the symbols. For error bar determination, see Methods.

Source data

Extended Data Fig. 3 Inversion of the twist handedness between right-handed screws of varying thread angle, φ.

The helical twist resulting from the close packing of two right-handed (that is 0 < φ < + 90o) screws leads (a) to a right-handed twist (and therefore a right-handed cholesteric pitch P > 0) of angle 2φ > 0 when φ < 45o and (b) to a left-handed twist (P < 0) of angle − (180o − 2φ) < 0 for φ > 45o.

Extended Data Fig. 4 Phase behaviour of semi-flexible M13 (a)-(c) and PEGylated M13-PEG (d)-(f) virus suspensions at pH close to the isoelectric point, pIE.

(a) and (d): Schematic representation of the filamentous viruses, whose colloidal stability stems from either (a) electrostatic or (d) steric repulsion. (b) and (e): Macroscopic observation under white light of the virion suspensions: while aggregates are observed in raw M13 virus dispersions at pH  pIE, the colloidal stability is preserved in the M13-PEG system. Scale bar: 2 mm. (c) and (f): Polarized optical microscopy images displaying a nematic-like birefingent texture with fibrillar moieties for raw M13 viruses (c) and the characteristic fingerprint texture of the cholesteric phase for PEGylated particles (f). Scale bar: 200 μm.

Extended Data Fig. 5 Helical supramolecular structures.

They are formed by condensation of filamentous viruses initially organized in a cholesteric mesophase, induced by depletion interaction using poly(ethylene glycol) polymer (molecular weight Mw=2000 g mol-1; Sigma-Aldrich) and observed by (a) polarizing and (b) differential interference contrast (DIC) microscopy. Scale bar: 2 μm.

Supplementary information

Supplementary Information

Supplementary Sections I–VII and Figs. 1–7.

Source data

Source Data Fig. 3

Numerical source data for Fig. 3.

Source Data Fig. 4

Numerical source data for Fig. 4.

Source Data Fig. 5

Numerical source data for Fig. 5.

Source Data Extended Data Fig. 2

Numerical source data for Extended Data Fig. 2.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grelet, E., Tortora, M.M.C. Elucidating chirality transfer in liquid crystals of viruses. Nat. Mater. (2024). https://doi.org/10.1038/s41563-024-01897-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41563-024-01897-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing