Skip to main content

Questions tagged [crank-nicolson]

For questions about the Crank-Nicolson method, an approach for discretizing and solving partial differential equations.

2 votes
1 answer
278 views

Asking advice for implementation of Conservative Finite Difference Scheme for numerically solving Gross-Pitaevskii equation

I am trying to numerically solve the Gross-Pitaevskii equation for an impurity coupled with a one-dimensional weakly-interacting bosonic bath, given by (in dimensionless units): \begin{align} i \frac{\...
1 vote
0 answers
42 views

How can I apply a mixed boundary condition to a multi-material heat transfer problem using Crank-Nicolson?

I am working on a mixed material model for a melting material and need to enforce both a Dirichlet and Neumann type condition at the interface. Subject to an external surface heat flux at the top of ...
1 vote
0 answers
66 views

Deriving order of accuracy and interpreting a given discretization scheme when underlying method ( finite difference/volume) not known

If a spatial grid is given with time levels like this: to solve the following model problem Now consider the following discretization schemes: Scheme 1 Scheme 2 Usually, to determine order of ...
0 votes
1 answer
182 views

Using Crank-Nicolson to solve Non-Linear Schrödinger equation in Python

I aim to solve the (non-linear) Schrodinger equation using the Crank-Nicolson method in Python. Here are my two functions. ...
1 vote
0 answers
609 views

Time-dependent Schrodinger equation implementation in FEniCS

For our Bachelors thesis we're trying to solve the Schrodinger equation $i\partial_tu = -\nabla^2u+Vu$ in FEniCS. Given the domain $[-5, 5]^2$ with an initial value of $u_0(x, y)=e^{(-2(x^2+y^2))}$ ...
1 vote
1 answer
304 views

Why does scipy Conjugate Gradient solver fail to converge for non-steady heat equation using Crank-Nicolson method

Could someone please explain why my implementation of the Crank-Nicolson method applied to the non-steady heat equation won't converge? There shouldn't be any nonlinear aspects to my implementation ...
1 vote
1 answer
366 views

Crank Nicolson Method with closed boundary conditions

I want to simulate 1D diffusion with a constant diffusion coefficient using the Crank-Nicolson method. $$\frac{\partial u (x,t)}{\partial t} = D \frac{\partial^2 u(x,t)}{\partial x^2}.$$ I take an ...
0 votes
2 answers
417 views

Can the Crank-Nicolson Method Be used to Solve The Schrodinger Equation with a Time Varying Potential?

I have been following an excellent article about how to use the Crank-Nicolson method to solve the Schrodinger equation. In the article, it starts with a $V(x, y, t)$ but the potential seems to become ...
1 vote
0 answers
207 views

Solving PDE on a non-uniform grid with Crank-Nicolson scheme

I am solving a 1D diffusion-type equation with the finite-difference Crank-Nicolson (CN) scheme, and I need to densify the spatial grid around the central point. One could change the spatial variable ...
1 vote
0 answers
125 views

Crank-Nicolson vs Spectral Methods for the TDSE

The time-dependent Schroedinger equation (TDSE) depends linearly on the system's initial state $\vert \psi(0) \rangle$, such that the solution can be generally written as $$ \vert \psi(t) \rangle = \...
2 votes
0 answers
173 views

Error in implementation of Crank-Nicolson method applied to 1D TDSE?

Some context, I've posted this question on physics SE and stack overflow. The former had nothing to offer, the latter had a great commenter that agreed with the phase looking off being one of the ...
0 votes
0 answers
89 views

Transparent Boundary Conditions for Finite Difference ADI PR 2D TDSE solution

I want to put (non-dirichlet) boundary conditions inside the code I wrote to solve the 2dim TDSE using the alternating direction implicit Peaceman - Rachford method. $$ (1 + iB\Delta t/2 ) \psi^{n+1/2}...
4 votes
1 answer
207 views

Method to linearize highly nonlinear partial differential equation

I have a set of coupled pdes which I want to solve using finite-difference, of which one is nonlinear. The three linear pdes for quantities $T_f$, $T_s$ and $c$ are convection-diffusion-reaction-like ...
2 votes
1 answer
487 views

Solving Schrodinger Equation with finite element and Crank-Nicolson?

I have asked this in Mathematic section, but received no reply. Please let me ask here to see if threr is any difference. The Schrodinger equation without potential has the following form: $$\...
2 votes
0 answers
145 views

Advection diffusion equation using Crank-Nicolson with total flux and Diriclet BCs

I am trying to model the 1D advection-diffusion equation: $${\partial c \over \partial t} = D_c{\partial^2 c \over \partial x^2} -u{\partial c \over \partial x}.$$ With Robin boundary conditions that ...

15 30 50 per page