Skip to main content

All Questions

1 vote
0 answers
42 views

How can I apply a mixed boundary condition to a multi-material heat transfer problem using Crank-Nicolson?

I am working on a mixed material model for a melting material and need to enforce both a Dirichlet and Neumann type condition at the interface. Subject to an external surface heat flux at the top of ...
ZebraEagle's user avatar
1 vote
1 answer
366 views

Crank Nicolson Method with closed boundary conditions

I want to simulate 1D diffusion with a constant diffusion coefficient using the Crank-Nicolson method. $$\frac{\partial u (x,t)}{\partial t} = D \frac{\partial^2 u(x,t)}{\partial x^2}.$$ I take an ...
Jbag1212's user avatar
  • 111
0 votes
0 answers
89 views

Transparent Boundary Conditions for Finite Difference ADI PR 2D TDSE solution

I want to put (non-dirichlet) boundary conditions inside the code I wrote to solve the 2dim TDSE using the alternating direction implicit Peaceman - Rachford method. $$ (1 + iB\Delta t/2 ) \psi^{n+1/2}...
velenos14's user avatar
  • 141
2 votes
0 answers
145 views

Advection diffusion equation using Crank-Nicolson with total flux and Diriclet BCs

I am trying to model the 1D advection-diffusion equation: $${\partial c \over \partial t} = D_c{\partial^2 c \over \partial x^2} -u{\partial c \over \partial x}.$$ With Robin boundary conditions that ...
DozerD's user avatar
  • 81
6 votes
2 answers
389 views

Is the diffusion equation with Neumann and Dirichlet BCs well-posed?

I am considering the following diffusion equation: $$\frac{\partial f}{\partial t} = \frac{\partial}{\partial x}[D(x,t)\frac{\partial f}{\partial x}]$$ over a grid ...
R Thompson's user avatar
1 vote
0 answers
53 views

Boundary conditions for a Non-linear Schrödinger equation using an extended crank nicolson scheme

I try to solve numerically the following PDE for $E(r, z)$ with a cylindrical symmetrie (i. e. $E(r, z) = E(-r, z)$). $\frac{\partial E}{\partial z} = \frac{i}{2k} \Delta E + \mathcal{N}(E)$ Where $...
user30548's user avatar
2 votes
1 answer
4k views

Applying Neumann boundaries to Crank-Nicolson solution in python

Consider the heat equation $$u_t = \kappa u_{xx}$$ with boundary conditions of $$u(x,0)=0\\ u(0,t)=100\\ u(l,t)=0$$ Numerical analysis by pyton can be done with ...
Googlebot's user avatar
  • 131
4 votes
2 answers
3k views

How to handle boundary conditions in Crank-Nicolson solution of IVP-BVP?

I'm trying to solve the PDE for $c(r,t)$ $$c_t=(1/r)(rJ)_r$$ using Crank-Nicolson, and I'm having difficulty with the boundary conditions. $J$ is the flux, the initial condition is $c(0,r)=c_{init}$, ...
Woody20's user avatar
  • 171
29 votes
1 answer
7k views

Conservation of a physical quantity when using Neumann boundary conditions applied to the advection-diffusion equation

I don't understand the different behaviour of the advection-diffusion equation when I apply different boundary conditions. My motivation is the simulation of a real physical quantity (particle density)...
boyfarrell's user avatar
  • 5,429