Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Understanding resource competition to achieve predictable synthetic gene expression in eukaryotes

Abstract

Synthetic gene expression in engineered cells typically depends on the host cell’s limited pool of intracellular resources, which can lead to resource competition between native and engineered functions and may cause unanticipated effects in the host and synthetic gene circuit. For example, competition for shared resources may lead to cellular overload affecting physiological functions (that is, cellular burden) and negatively affect synthetic construct performance to the point of unreliability. This fundamental problem has implications for the use of synthetic genetic constructs in cell engineering for foundational research, therapy and bioprocessing. Resource competition has mainly been investigated in model bacteria systems, but also considerably affects eukaryotic systems, including mammalian cells. In this Review, we discuss resource competition beyond bacteria, outlining how it can lead to gene expression coupling, gene expression and metabolic burden. We also examine ways to quantify cellular burden in mammalian cells, and investigate circuit-centric and host-centric mitigation strategies, highlighting important implications of resource competition for cell engineering in therapeutic and bioproduction applications as well as in fundamental biology studies.

Key points

  • Synthetic genetic circuits use metabolic, transcriptional, translational and post-translational resources from their engineered host cells, competing with native functions and leading to cellular burden.

  • Resource competition has been well described in prokaryotes, but is often overlooked in eukaryotic organisms, including in mammalian cells.

  • Cellular burden caused by resource competition can be quantified and mitigated in eukaryotic systems to achieve predictability in gene expression.

  • Understanding and mitigating resource competition and cellular burden may improve cell engineering for bioproduction, therapy and fundamental biology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Resource competition between native and engineered cellular functions.
Fig. 2: Tools to quantify cellular burden.
Fig. 3: Mitigation of resource competition by circuit-centric approaches.
Fig. 4: Mitigation of resource competition by host-centric approaches.

Similar content being viewed by others

References

  1. Zhang, C., Zhuang, Q., Liu, J. & Liu, X. Synthetic biology in chimeric antigen receptor T (CAR T) cell engineering. ACS Synth. Biol. 11, 1–15 (2022).

    Article  Google Scholar 

  2. Yan, X., Liu, X., Zhao, C. & Chen, G.-Q. Applications of synthetic biology in medical and pharmaceutical fields. Signal. Transduct. Target. Ther. 8, 1–33 (2023).

    Google Scholar 

  3. Scown, C. D. & Keasling, J. D. Sustainable manufacturing with synthetic biology. Nat. Biotechnol. 40, 304–307 (2022).

    Article  Google Scholar 

  4. Qian, Y., Huang, H.-H., Jiménez, J. I. & Del Vecchio, D. Resource competition shapes the response of genetic circuits. ACS Synth. Biol. 6, 1263–1272 (2017).

    Article  Google Scholar 

  5. Grob, A., Di Blasi, R. & Ceroni, F. Experimental tools to reduce the burden of bacterial synthetic biology. Curr. Opin. Syst. Biol. 28, 100393 (2021).

    Article  Google Scholar 

  6. Frei, T. et al. Characterization and mitigation of gene expression burden in mammalian cells. Nat. Commun. 11, 1–14 (2020). This article demonstrates how competition for gene expression resources affects multiple transiently expressed genes in mammalian cells and disrupts designed dynamics, suggesting a different resource bottleneck to that previously established in bacteria, that is, the transcriptional machinery.

    Article  Google Scholar 

  7. Borkowski, O., Ceroni, F., Stan, G.-B. & Ellis, T. Overloaded and stressed: whole-cell considerations for bacterial synthetic biology. Curr. Opin. Microbiol. 33, 123–130 (2016).

    Article  Google Scholar 

  8. Jones, R. D. et al. An endoribonuclease-based feedforward controller for decoupling resource-limited genetic modules in mammalian cells. Nat. Commun. 11, 1–16 (2020).

    Article  Google Scholar 

  9. Di Blasi, R. et al. Resource-aware construct design in mammalian cells. Nat. Commun. 14, 3576 (2023). This article reports a resource-aware design of synthetic constructs for maximized gene expression performance and minimized resource footprint.

    Article  Google Scholar 

  10. Gyorgy, A. et al. Isocost lines describe the cellular economy of genetic circuits. Biophys. J. 109, 639–646 (2015). This article demonstrates coupling of gene expression levels between gene circuits expressed on the same plasmid.

    Article  Google Scholar 

  11. Ceroni, F., Algar, R., Stan, G.-B. & Ellis, T. Quantifying cellular capacity identifies gene expression designs with reduced burden. Nat. Methods 12, 415–418 (2015). This article reports the impact of gene expression burden from synthetic gene circuits on endogenous gene expression.

    Article  Google Scholar 

  12. Tan, C., Marguet, P. & You, L. Emergent bistability by a growth-modulating positive feedback circuit. Nat. Chem. Biol. 5, 842–848 (2009).

    Article  Google Scholar 

  13. Deris, J. B. et al. The innate growth bistability and fitness landscapes of antibiotic-resistant bacteria. Science 342, 1237435 (2013).

    Article  Google Scholar 

  14. Nevozhay, D., Adams, R. M., Van Itallie, E., Bennett, M. R. & Balázsi, G. Mapping the environmental fitness landscape of a synthetic gene circuit. PLoS Comput. Biol. 8, e1002480 (2012).

    Article  Google Scholar 

  15. Zhang, R. et al. Topology-dependent interference of synthetic gene circuit function by growth feedback. Nat. Chem. Biol. 16, 695–701 (2020).

    Article  Google Scholar 

  16. Kong, L.-W., Shi, W., Tian, X.-J. & Lai, Y.-C. Effects of growth feedback on gene circuits: a dynamical understanding. Preprint at bioRxiv https://doi.org/10.1101/2023.06.06.543915 (2023).

  17. Zhang, R. et al. Winner-takes-all resource competition redirects cascading cell fate transitions. Nat. Commun. 12, 853 (2021).

    Article  Google Scholar 

  18. Prindle, A. et al. Rapid and tunable post-translational coupling of genetic circuits. Nature 508, 387–391 (2014).

    Article  Google Scholar 

  19. Di Blasi, R., Marbiah, M. M., Siciliano, V., Polizzi, K. & Ceroni, F. A call for caution in analysing mammalian co-transfection experiments and implications of resource competition in data misinterpretation. Nat. Commun. 12, 1–6 (2021).

    Article  Google Scholar 

  20. Kafri, M., Metzl-Raz, E., Jona, G. & Barkai, N. The cost of protein production. Cell Rep. 14, 22–31 (2016).

    Article  Google Scholar 

  21. Makanae, K., Kintaka, R., Makino, T., Kitano, H. & Moriya, H. Identification of dosage-sensitive genes in Saccharomyces cerevisiae using the genetic tug-of-war method. Genome Res. 23, 300–311 (2013).

    Article  Google Scholar 

  22. Metzl-Raz, E., Kafri, M., Yaakov, G. & Barkai, N. Gene transcription as a limiting factor in protein production and cell growth. G3 10, 3229–3242 (2020).

    Article  Google Scholar 

  23. Metzl-Raz, E. et al. Principles of cellular resource allocation revealed by condition-dependent proteome profiling. eLife 6, e28034 (2017).

    Article  Google Scholar 

  24. Kintaka, R. et al. Genetic profiling of protein burden and nuclear export overload. eLife 9, e54080 (2020).

    Article  Google Scholar 

  25. Kastberg, L. L. B., Ard, R., Jensen, M. K. & Workman, C. T. Burden imposed by heterologous protein production in two major industrial yeast cell factories: identifying sources and mitigation strategies. Front. Fungal Biol. 3, 827704 (2022).

    Article  Google Scholar 

  26. Farkas, Z. et al. Hsp70-associated chaperones have a critical role in buffering protein production costs. eLife 7, e29845 (2018).

    Article  Google Scholar 

  27. Wu, G. et al. Metabolic burden: cornerstones in synthetic biology and metabolic engineering applications. Trends Biotechnol. 34, 652–664 (2016).

    Article  Google Scholar 

  28. Bhattacharyya, S. et al. Transient protein-protein interactions perturb E. coli metabolome and cause gene dosage toxicity. eLife 5, e20309 (2016).

    Article  Google Scholar 

  29. Jackson, R. J., Hellen, C. U. T. & Pestova, T. V. The mechanism of eukaryotic translation initiation and principles of its regulation. Nat. Rev. Mol. Cell Biol. 11, 113–127 (2010).

    Article  Google Scholar 

  30. Zahrl, R. J., Gasser, B., Mattanovich, D. & Ferrer, P. Detection and elimination of cellular bottlenecks in protein-producing yeasts. Methods Mol. Biol. 1923, 75–95 (2019).

    Article  Google Scholar 

  31. Piazza, I. et al. A map of protein–metabolite interactions reveals principles of chemical communication. Cell 172, 358–372.e23 (2018).

    Article  Google Scholar 

  32. Sathyanarayanan, U. et al. ATP hydrolysis by yeast Hsp104 determines protein aggregate dissolution and size in vivo. Nat. Commun. 11, 5226 (2020).

    Article  Google Scholar 

  33. Ralser, M. et al. Dynamic rerouting of the carbohydrate flux is key to counteracting oxidative stress. J. Biol. 6, 10 (2007).

    Article  Google Scholar 

  34. Kuehne, A. et al. Acute activation of oxidative pentose phosphate pathway as first-line response to oxidative stress in human skin cells. Mol. Cell 59, 359–371 (2015).

    Article  Google Scholar 

  35. Chevallier, V., Andersen, M. R. & Malphettes, L. Oxidative stress-alleviating strategies to improve recombinant protein production in CHO cells. Biotechnol. Bioeng. 117, 1172–1186 (2020).

    Article  Google Scholar 

  36. Gutierrez, J. M. et al. Genome-scale reconstructions of the mammalian secretory pathway predict metabolic costs and limitations of protein secretion. Nat. Commun. 11, 1–10 (2020).

    Article  Google Scholar 

  37. Kol, S. et al. Multiplex secretome engineering enhances recombinant protein production and purity. Nat. Commun. 11, 1–10 (2020). This article reports that secretion resources are scarce through multiplex genetic engineering, and that deletion of non-essential secreted proteins can increase output of a desired inserted sequence in CHO cells.

    Article  Google Scholar 

  38. Synoground, B. F. et al. Transient ammonia stress on Chinese hamster ovary (CHO) cells yield alterations to alanine metabolism and IgG glycosylation profiles. Biotechnol. J. 16, e2100098 (2021).

    Article  Google Scholar 

  39. McAtee Pereira, A. G., Walther, J. L., Hollenbach, M. & Young, J. D. 13C flux analysis reveals that rebalancing medium amino acid composition can reduce ammonia production while preserving central carbon metabolism of CHO cell cultures. Biotechnol. J. 13, e1700518 (2018).

    Article  Google Scholar 

  40. Sacco, S. A. et al. Attenuation of glutamine synthetase selection marker improves product titer and reduces glutamine overflow in Chinese hamster ovary cells. Biotechnol. Bioeng. 119, 1712–1727 (2022).

    Article  Google Scholar 

  41. Shachrai, I., Zaslaver, A., Alon, U. & Dekel, E. Cost of unneeded proteins in E. coli is reduced after several generations in exponential growth. Mol. Cell 38, 758–767 (2010).

    Article  Google Scholar 

  42. Cardinale, S., Joachimiak, M. P. & Arkin, A. P. Effects of genetic variation on the E. coli host–circuit interface. Cell Rep. 4, 231–237 (2013).

    Article  Google Scholar 

  43. Gorochowski, T. E., van den Berg, E., Kerkman, R., Roubos, J. A. & Bovenberg, R. A. L. Using synthetic biological parts and microbioreactors to explore the protein expression characteristics of Escherichia coli. ACS Synth. Biol. 3, 129–139 (2014).

    Article  Google Scholar 

  44. Eguchi, Y. et al. Estimating the protein burden limit of yeast cells by measuring the expression limits of glycolytic proteins. eLife 7, e34595 (2018).

    Article  Google Scholar 

  45. Merksamer, P. I., Trusina, A. & Papa, F. R. Real-time redox measurements during endoplasmic reticulum stress reveal interlinked protein folding functions. Cell 135, 933–947 (2008). This article demonstrates an endoplasmic reticulum stress monitor through dynamic measurement of the UPR in yeast.

    Article  Google Scholar 

  46. Cedras, G., Kroukamp, H., Van Zyl, W. H. & Den Haan, R. The in vivo detection and measurement of the unfolded protein response in recombinant cellulase producing Saccharomyces cerevisiae strains. Biotechnol. Appl. Biochem. 67, 82–94 (2020).

    Article  Google Scholar 

  47. Roy, G. et al. Development of a fluorescent reporter system for monitoring ER stress in Chinese hamster ovary cells and its application for therapeutic protein production. PLoS ONE 12, e0183694 (2017).

    Article  Google Scholar 

  48. Du, Z. et al. Non-invasive UPR monitoring system and its applications in CHO production cultures. Biotechnol. Bioeng. 110, 2184–2194 (2013).

    Article  Google Scholar 

  49. Sosa-Carrillo, S., Galez, H., Napolitano, S., Bertaux, F. & Batt, G. Maximizing protein production by keeping cells at optimal secretory stress levels using real-time control approaches. Nat. Commun. 14, 1–15 (2023). This article reports real-time closed loop control to dynamically adjust secretory stress and maximize protein production in yeast.

    Article  Google Scholar 

  50. Wu, L. et al. Förster resonance energy transfer (FRET)-based small-molecule sensors and imaging agents. Chem. Soc. Rev. 49, 5110–5139 (2020).

    Article  Google Scholar 

  51. Boada, Y., Vignoni, A., Picó, J. & Carbonell, P. Extended metabolic biosensor design for dynamic pathway regulation of cell factories. iScience 23, 101305 (2020).

    Article  Google Scholar 

  52. Nikolados, E.-M., Weiße, A. Y., Ceroni, F. & Oyarzún, D. A. Growth defects and loss-of-function in synthetic gene circuits. ACS Synth. Biol. 8, 1231–1240 (2019).

    Article  Google Scholar 

  53. Gorochowski, T. E., Avcilar-Kucukgoze, I., Bovenberg, R. A. L., Roubos, J. A. & Ignatova, Z. A minimal model of ribosome allocation dynamics captures trade-offs in expression between endogenous and synthetic genes. ACS Synth. Biol. 5, 710–720 (2016).

    Article  Google Scholar 

  54. Boada, Y., Vignoni, A. & Picó, J. Multiobjective identification of a feedback synthetic gene circuit. IEEE Trans. Control. Syst. Technol. 28, 208–223 (2020).

    Article  Google Scholar 

  55. Baghdassarian, H. M. & Lewis, N. E. Resource allocation in mammalian systems. Biotechnol. Adv. 71, 108305 (2024).

    Article  Google Scholar 

  56. Strain, B., Morrissey, J., Antonakoudis, A. & Kontoravdi, C. Genome-scale models as a vehicle for knowledge transfer from microbial to mammalian cell systems. Comput. Struct. Biotechnol. J. 21, 1543–1549 (2023).

    Article  Google Scholar 

  57. Lloyd, C. J. et al. COBRAme: a computational framework for genome-scale models of metabolism and gene expression. PLoS Comput. Biol. 14, e1006302 (2018).

    Article  Google Scholar 

  58. Bulović, A. et al. Automated generation of bacterial resource allocation models. Metab. Eng. 55, 12–22 (2019).

    Article  Google Scholar 

  59. Bodeit, O., Ben Samir, I., Karr, J. R., Goelzer, A. & Liebermeister, W. RBAtools: a programming interface for resource balance analysis models. Bioinform. Adv. 3, vbad056 (2023).

    Article  Google Scholar 

  60. Mori, M., Hwa, T., Martin, O. C., De Martino, A. & Marinari, E. Constrained allocation flux balance analysis. PLoS Comput. Biol. 12, e1004913 (2016).

    Article  Google Scholar 

  61. Karr, J. R. et al. A whole-cell computational model predicts phenotype from genotype. Cell 150, 389–401 (2012).

    Article  Google Scholar 

  62. Atkinson, E., Tuza, Z., Perrino, G., Stan, G.-B. & Ledesma-Amaro, R. Resource-aware whole-cell model of division of labour in a microbial consortium for complex-substrate degradation. Microb. Cell Fact. 21, 115 (2022).

    Article  Google Scholar 

  63. O’Connell, R. W. et al. Ultra-high throughput mapping of genetic design space. Preprint at bioRxiv https://doi.org/10.1101/2023.03.16.532704 (2023).

    Article  Google Scholar 

  64. Barajas, C. & Del Vecchio, D. Synthetic biology by controller design. Curr. Opin. Biotechnol. 78, 102837 (2022).

    Article  Google Scholar 

  65. El-Samad, H., Goff, J. P. & Khammash, M. Calcium homeostasis and parturient hypocalcemia: an integral feedback perspective. J. Theor. Biol. 214, 17–29 (2002).

    Article  MathSciNet  Google Scholar 

  66. Muzzey, D., Gómez-Uribe, C. A., Mettetal, J. T. & van Oudenaarden, A. A systems-level analysis of perfect adaptation in yeast osmoregulation. Cell 138, 160–171 (2009).

    Article  Google Scholar 

  67. Shopera, T., He, L., Oyetunde, T., Tang, Y. J. & Moon, T. S. Decoupling resource-coupled gene expression in living cells. ACS Synth. Biol. 6, 1596–1604 (2017).

    Article  Google Scholar 

  68. Ceroni, F. et al. Burden-driven feedback control of gene expression. Nat. Methods 15, 387–393 (2018).

    Article  Google Scholar 

  69. Frei, T., Chang, C.-H., Filo, M., Arampatzis, A. & Khammash, M. A genetic mammalian proportional-integral feedback control circuit for robust and precise gene regulation. Proc. Natl. Acad. Sci. USA 119, e2122132119 (2022). This article reports the first example of a genetic proportional-integral feedback mechanism to mitigate gene expression variability in mammalian cells.

    Article  Google Scholar 

  70. Huang, H.-H., Qian, Y. & Del Vecchio, D. A quasi-integral controller for adaptation of genetic modules to variable ribosome demand. Nat. Commun. 9, 5415 (2018).

    Article  Google Scholar 

  71. Aoki, S. K. et al. A universal biomolecular integral feedback controller for robust perfect adaptation. Nature 570, 533–537 (2019).

    Article  Google Scholar 

  72. Khammash, M. H. Perfect adaptation in biology. Cell Syst. 12, 509–521 (2021).

    Article  Google Scholar 

  73. Briat, C., Zechner, C. & Khammash, M. Design of a synthetic integral feedback circuit: dynamic analysis and DNA implementation. ACS Synth. Biol. 5, 1108–1116 (2016).

    Article  Google Scholar 

  74. Briat, C., Gupta, A. & Khammash, M. Antithetic integral feedback ensures robust perfect adaptation in noisy biomolecular networks. Cell Syst. 2, 15–26 (2016).

    Article  Google Scholar 

  75. Chevalier, M., Gómez-Schiavon, M., Ng, A. H. & El-Samad, H. Design and analysis of a proportional-integral-derivative controller with biological molecules. Cell Syst. 9, 338–353.e10 (2019).

    Article  Google Scholar 

  76. Filo, M., Kumar, S. & Khammash, M. A hierarchy of biomolecular proportional-integral-derivative feedback controllers for robust perfect adaptation and dynamic performance. Nat. Commun. 13, 2119 (2022).

    Article  Google Scholar 

  77. Lillacci, G., Benenson, Y. & Khammash, M. Synthetic control systems for high performance gene expression in mammalian cells. Nucleic Acids Res. 46, 9855–9863 (2018).

    Article  Google Scholar 

  78. Olsman, N. et al. Hard limits and performance tradeoffs in a class of antithetic integral feedback networks. Cell Syst. 9, 49–63.e16 (2019).

    Article  Google Scholar 

  79. Liu, C. C., Jewett, M. C., Chin, J. W. & Voigt, C. A. Toward an orthogonal central dogma. Nat. Chem. Biol. 14, 103–106 (2018).

    Article  Google Scholar 

  80. Ravikumar, A., Arrieta, A. & Liu, C. C. An orthogonal DNA replication system in yeast. Nat. Chem. Biol. 10, 175–177 (2014).

    Article  Google Scholar 

  81. Meyer, A. J., Ellefson, J. W. & Ellington, A. D. Directed evolution of a panel of orthogonal T7 RNA polymerase variants for in vivo or in vitro synthetic circuitry. ACS Synth. Biol. 4, 1070–1076 (2015).

    Article  Google Scholar 

  82. Schmied, W. H. et al. Controlling orthogonal ribosome subunit interactions enables evolution of new function. Nature 564, 444–448 (2018).

    Article  Google Scholar 

  83. Carlson, E. D. et al. Engineered ribosomes with tethered subunits for expanding biological function. Nat. Commun. 10, 3920 (2019).

    Article  Google Scholar 

  84. Orelle, C. et al. Protein synthesis by ribosomes with tethered subunits. Nature 524, 119–124 (2015).

    Article  Google Scholar 

  85. Aleksashin, N. A. et al. Assembly and functionality of the ribosome with tethered subunits. Nat. Commun. 10, 930 (2019).

    Article  Google Scholar 

  86. Aleksashin, N. A. et al. A fully orthogonal system for protein synthesis in bacterial cells. Nat. Commun. 11, 1858 (2020).

    Article  Google Scholar 

  87. Cameron, D. E. & Collins, J. J. Tunable protein degradation in bacteria. Nat. Biotechnol. 32, 1276���1281 (2014).

    Article  Google Scholar 

  88. Darlington, A. P. S., Kim, J., Jiménez, J. I. & Bates, D. G. Dynamic allocation of orthogonal ribosomes facilitates uncoupling of co-expressed genes. Nat. Commun. 9, 1–12 (2018). This article reports the design of dynamic resource allocator controllers based on native and synthetic ribosome pools.

    Article  Google Scholar 

  89. Darlington, A. P. S. & Bates, D. G. Architectures for combined transcriptional and translational resource allocation controllers. Cell Syst. 11, 382–392.e9 (2020).

    Article  Google Scholar 

  90. An, W. & Chin, J. W. Synthesis of orthogonal transcription–translation networks. Proc. Natl Acad. Sci. USA 106, 8477–8482 (2009).

    Article  Google Scholar 

  91. Bauer, J. W. et al. Specialized yeast ribosomes: a customized tool for selective mRNA translation. PLoS ONE 8, e67609 (2013).

    Article  Google Scholar 

  92. Hu, X. et al. Engineering and functional analysis of yeast with a monotypic 40S ribosome subunit. Proc. Natl. Acad. Sci. USA 119, e2114445119 (2022).

    Article  Google Scholar 

  93. Rugbjerg, P. & Sommer, M. O. A. Overcoming genetic heterogeneity in industrial fermentations. Nat. Biotechnol. 37, 869–876 (2019).

    Article  Google Scholar 

  94. Rugbjerg, P., Sarup-Lytzen, K., Nagy, M. & Sommer, M. O. A. Synthetic addiction extends the productive life time of engineered Escherichia coli populations. Proc. Natl Acad. Sci. USA 115, 2347–2352 (2018). This article demonstrates a genetic circuit coupling the end product of a mevalonate pathway to the expression of yeast essential genes, a strategy termed synthetic addiction, that delays the emergence of phenotypic heterogeneity during long-term fermentation processes.

    Article  Google Scholar 

  95. D’Ambrosio, V. et al. Regulatory control circuits for stabilizing long-term anabolic product formation in yeast. Metab. Eng. 61, 369–380 (2020).

    Article  Google Scholar 

  96. Lee, S.-W., Rugbjerg, P. & Sommer, M. O. A. Exploring selective pressure trade-offs for synthetic addiction to extend metabolite productive lifetimes in yeast. ACS Synth. Biol. 10, 2842–2849 (2021).

    Article  Google Scholar 

  97. von Kamp, A. & Klamt, S. Growth-coupled overproduction is feasible for almost all metabolites in five major production organisms. Nat. Commun. 8, 15956 (2017).

    Article  Google Scholar 

  98. Pereira, F. et al. Model-guided development of an evolutionarily stable yeast chassis. Mol. Syst. Biol. 17, e10253 (2021).

    Article  Google Scholar 

  99. Cartwright, J. F., Anderson, K., Longworth, J., Lobb, P. & James, D. C. Highly sensitive detection of mutations in CHO cell recombinant DNA using multi-parallel single molecule real-time DNA sequencing. Biotechnol. Bioeng. 115, 1485–1498 (2018).

    Article  Google Scholar 

  100. Schlegel, S., Genevaux, P. & de Gier, J.-W. De-convoluting the genetic adaptations of E. coli C41(DE3) in real time reveals how alleviating protein production stress improves yields. Cell Rep. 10, 1758–1766 (2015).

    Article  Google Scholar 

  101. Yoshikawa, T. et al. Amplified gene location in chromosomal DNA affected recombinant protein production and stability of amplified genes. Biotechnol. Prog. 16, 710–715 (2000).

    Article  Google Scholar 

  102. Newbert, R. W., Barton, B., Greaves, P., Harper, J. & Turner, G. Analysis of a commercially improved Penicillium chrysogenum strain series: involvement of recombinogenic regions in amplification and deletion of the penicillin biosynthesis gene cluster. J. Ind. Microbiol. Biotechnol. 19, 18–27 (1997).

    Article  Google Scholar 

  103. Rugbjerg, P., Myling-Petersen, N., Porse, A., Sarup-Lytzen, K. & Sommer, M. O. A. Diverse genetic error modes constrain large-scale bio-based production. Nat. Commun. 9, 1–14 (2018).

    Article  Google Scholar 

  104. Pósfai, G. et al. Emergent properties of reduced-genome Escherichia coli. Science 312, 1044–1046 (2006).

    Article  Google Scholar 

  105. Burgard, A., Burk, M. J., Osterhout, R., Van Dien, S. & Yim, H. Development of a commercial scale process for production of 1,4-butanediol from sugar. Curr. Opin. Biotechnol. 42, 118–125 (2016).

    Article  Google Scholar 

  106. Choi, J. W., Yim, S. S., Kim, M. J. & Jeong, K. J. Enhanced production of recombinant proteins with Corynebacterium glutamicum by deletion of insertion sequences (IS elements). Microb. Cell Fact. 14, 207 (2015).

    Article  Google Scholar 

  107. Richardson, S. M. et al. Design of a synthetic yeast genome. Science 355, 1040–1044 (2017).

    Article  Google Scholar 

  108. Xu, X. et al. Trimming the genomic fat: minimising and re-functionalising genomes using synthetic biology. Nat. Commun. 14, 1–11 (2023).

    Google Scholar 

  109. Kurnit, D. M. Escherichia coli recA deletion strains that are highly competent for transformation and for in vivo phage packaging. Gene 82, 313–315 (1989).

    Article  Google Scholar 

  110. Csörgo, B., Fehér, T., Tímár, E., Blattner, F. R. & Pósfai, G. Low-mutation-rate, reduced-genome Escherichia coli: an improved host for faithful maintenance of engineered genetic constructs. Microb. Cell Fact. 11, 11 (2012).

    Article  Google Scholar 

  111. Aguilar Suárez, R., Stülke, J. & van Dijl, J. M. Less is more: toward a genome-reduced bacillus cell factory for ‘difficult proteins’. ACS Synth. Biol. 8, 99–108 (2019).

    Article  Google Scholar 

  112. Komatsu, M., Uchiyama, T., Omura, S., Cane, D. E. & Ikeda, H. Genome-minimized Streptomyces host for the heterologous expression of secondary metabolism. Proc. Natl. Acad. Sci. USA 107, 2646–2651 (2010).

    Article  Google Scholar 

  113. Mizoguchi, H., Mori, H. & Fujio, T. Escherichia coli minimum genome factory. Biotechnol. Appl. Biochem. 46, 157–167 (2007).

    Article  Google Scholar 

  114. Lastiri-Pancardo, G., Mercado-Hernández, J. S., Kim, J., Jiménez, J. I. & Utrilla, J. A quantitative method for proteome reallocation using minimal regulatory interventions. Nat. Chem. Biol. 16, 1026–1033 (2020).

    Article  Google Scholar 

  115. Kallehauge, T. B. et al. Ribosome profiling-guided depletion of an mRNA increases cell growth rate and protein secretion. Sci. Rep. 7, 1–12 (2017).

    Article  Google Scholar 

  116. Xiong, K. et al. An optimized genome-wide, virus-free CRISPR screen for mammalian cells. Cell Rep. Methods 1, 100062 (2021).

    Article  Google Scholar 

  117. Avalos, J. L., Fink, G. R. & Stephanopoulos, G. Compartmentalization of metabolic pathways in yeast mitochondria improves the production of branched-chain alcohols. Nat. Biotechnol. 31, 335–341 (2013).

    Article  Google Scholar 

  118. Grewal, P. S., Samson, J. A., Baker, J. J., Choi, B. & Dueber, J. E. Peroxisome compartmentalization of a toxic enzyme improves alkaloid production. Nat. Chem. Biol. 17, 96–103 (2021).

    Article  Google Scholar 

  119. Zhu, Z.-T. et al. Metabolic compartmentalization in yeast mitochondria: burden and solution for squalene overproduction. Metab. Eng. 68, 232–245 (2021).

    Article  Google Scholar 

  120. Zhang, H., Pereira, B., Li, Z. & Stephanopoulos, G. Engineering Escherichia coli coculture systems for the production of biochemical products. Proc. Natl Acad. Sci. USA 112, 8266–8271 (2015).

    Article  Google Scholar 

  121. Zhou, K., Qiao, K., Edgar, S. & Stephanopoulos, G. Distributing a metabolic pathway among a microbial consortium enhances production of natural products. Nat. Biotechnol. 33, 377–383 (2015).

    Article  Google Scholar 

  122. Jones, J. A. et al. Experimental and computational optimization of an Escherichia coli co-culture for the efficient production of flavonoids. Metab. Eng. 35, 55–63 (2016).

    Article  Google Scholar 

  123. Fang, Z., Jones, J. A., Zhou, J. & Koffas, M. A. G. Engineering Escherichia coli co-cultures for production of curcuminoids from glucose. Biotechnol. J. 13, e1700576 (2018).

    Article  Google Scholar 

  124. Jones J. A. et al. Complete biosynthesis of anthocyanins using E. coli polycultures. MBio 8, https://doi.org/10.1128/mbio.00621-17 (2017).

  125. Aulakh, S. K. et al. Spontaneously established syntrophic yeast communities improve bioproduction. Nat. Chem. Biol. https://doi.org/10.1038/s41589-023-01341-2 (2023).

    Article  Google Scholar 

  126. Tsoi, R. et al. Metabolic division of labor in microbial systems. Proc. Natl Acad. Sci. USA 115, 2526–2531 (2018).

    Article  Google Scholar 

  127. Roell, G. W. et al. Engineering microbial consortia by division of labor. Microb. Cell Fact. 18, 35 (2019).

    Article  Google Scholar 

  128. Bragdon, M. D. J. et al. Cooperative assembly confers regulatory specificity and long-term genetic circuit stability. Cell 186, 3810–3825.e18 (2023).

    Article  Google Scholar 

  129. Gorochowski, T. E. et al. Genetic circuit characterization and debugging using RNA-seq. Mol. Syst. Biol. 13, 952 (2017).

    Article  Google Scholar 

  130. Chong, Z. X., Yeap, S. K. & Ho, W. Y. Transfection types, methods and strategies: a technical review. PeerJ 9, e11165 (2021).

    Article  Google Scholar 

  131. Farr, A. & Roman, A. A pitfall of using a second plasmid to determine transfection efficiency. Nucleic Acids Res. 20, 920 (1992).

    Article  Google Scholar 

  132. Mehta, D., Chirmade, T., Tungekar, A. A., Gani, K. & Bhambure, R. Cloning and expression of antibody fragment (Fab) I: effect of expression construct and induction strategies on light and heavy chain gene expression. Biochem. Eng. J. 176, 108189 (2021).

    Article  Google Scholar 

  133. Qin, C. et al. Precise programming of multigene expression stoichiometry in mammalian cells by a modular and programmable transcriptional system. Nat. Commun. 14, 1500 (2023).

    Article  Google Scholar 

  134. Chubukov, V., Gerosa, L., Kochanowski, K. & Sauer, U. Coordination of microbial metabolism. Nat. Rev. Microbiol. 12, 327–340 (2014).

    Article  Google Scholar 

  135. Hackett, S. R. et al. Systems-level analysis of mechanisms regulating yeast metabolic flux. Science 354, aaf2786 (2016).

    Article  Google Scholar 

  136. Wang, C.-Y. et al. Metabolome and proteome analyses reveal transcriptional misregulation in glycolysis of engineered E. coli. Nat. Commun. 12, 4929 (2021).

    Article  Google Scholar 

  137. Ghosh, A., Zhao, H. & Price, N. D. Genome-scale consequences of cofactor balancing in engineered pentose utilization pathways in Saccharomyces cerevisiae. PLoS ONE 6, e27316 (2011).

    Article  Google Scholar 

  138. Fitzgerald, D. M., Hastings, P. J. & Rosenberg, S. M. Stress-induced mutagenesis: implications in cancer and drug resistance. Annu. Rev. Cancer Biol. 1, 119–140 (2017).

    Article  Google Scholar 

  139. Shor, E., Fox, C. A. & Broach, J. R. The yeast environmental stress response regulates mutagenesis induced by proteotoxic stress. PLoS Genet. 9, e1003680 (2013).

    Article  Google Scholar 

  140. Cella, F. et al. MIRELLA: a mathematical model explains the effect of microRNA-mediated synthetic genes regulation on intracellular resource allocation. Nucleic Acids Res. 51, 3452–3464 (2023).

    Article  Google Scholar 

  141. Dionisi, S., Piera, K., Baumschlager, A. & Khammash, M. Implementation of a novel optogenetic tool in mammalian cells based on a split T7 RNA polymerase. ACS Synth. Biol. 11, 2650–2661 (2022).

    Article  Google Scholar 

  142. Peng, K., Kroukamp, H., Pretorius, I. S. & Paulsen, I. T. Yeast synthetic minimal biosensors for evaluating protein production. ACS Synth. Biol. 10, 1640–1650 (2021).

    Article  Google Scholar 

  143. Ayer, A. et al. A genome-wide screen in yeast identifies specific oxidative stress genes required for the maintenance of sub-cellular redox homeostasis. PLoS ONE 7, e44278 (2012).

    Article  Google Scholar 

  144. Botman, D., van Heerden, J. H. & Teusink, B. An improved ATP FRET sensor for yeast shows heterogeneity during nutrient transitions. ACS Sens. 5, 814–822 (2020).

    Article  Google Scholar 

  145. Nguyen, P. T. M., Ishiwata-Kimata, Y. & Kimata, Y. Monitoring ADP/ATP ratio in yeast cells using the fluorescent-protein reporter PercevalHR. Biosci. Biotechnol. Biochem. 83, 824–828 (2019).

    Article  Google Scholar 

  146. Valkonen, M., Mojzita, D., Penttilä, M. & Bencina, M. Noninvasive high-throughput single-cell analysis of the intracellular pH of Saccharomyces cerevisiae by ratiometric flow cytometry. Appl. Environ. Microbiol. 79, 7179–7187 (2013).

    Article  Google Scholar 

  147. Ortega, A. D. et al. A synthetic RNA-based biosensor for fructose-1,6-bisphosphate that reports glycolytic flux. Cell Chem. Biol. 28, 1554–1568.e8 (2021).

    Article  Google Scholar 

  148. Monteiro, F. et al. Measuring glycolytic flux in single yeast cells with an orthogonal synthetic biosensor. Mol. Syst. Biol. 15, e9071 (2019).

    Article  Google Scholar 

  149. Botman, D. et al. A yeast FRET biosensor enlightens cAMP signaling. Mol. Biol. Cell 32, 1229–1240 (2021).

    Article  Google Scholar 

  150. Knudsen, J. D., Carlquist, M. & Gorwa-Grauslund, M. NADH-dependent biosensor in Saccharomyces cerevisiae: principle and validation at the single cell level. AMB. Express 4, 81 (2014).

    Article  Google Scholar 

  151. Zhang, J. et al. Engineering an NADPH/NADP+ redox biosensor in yeast. ACS Synth. Biol. 5, 1546–1556 (2016).

    Article  Google Scholar 

  152. Lobas, M. A. et al. A genetically encoded single-wavelength sensor for imaging cytosolic and cell surface ATP. Nat. Commun. 10, 711 (2019).

    Article  Google Scholar 

  153. Klarenbeek, J., Goedhart, J., van Batenburg, A., Groenewald, D. & Jalink, K. Fourth-generation epac-based FRET sensors for cAMP feature exceptional brightness, photostability and dynamic range: characterization of dedicated sensors for FLIM, for ratiometry and with high affinity. PLoS ONE 10, e0122513 (2015).

    Article  Google Scholar 

  154. Smith, F. D. et al. Local protein kinase A action proceeds through intact holoenzymes. Science 356, 1288–1293 (2017).

    Article  Google Scholar 

  155. Wang, L. et al. A high-performance genetically encoded fluorescent indicator for in vivo cAMP imaging. Nat. Commun. 13, 5363 (2022).

    Article  Google Scholar 

  156. Zhang, Y., Robertson, J. B., Xie, Q. & Johnson, C. H. Monitoring intracellular pH change with a genetically encoded and ratiometric luminescence sensor in yeast and mammalian cells. Methods Mol. Biol. 1461, 117–130 (2016).

    Article  Google Scholar 

  157. Tao, R. et al. Genetically encoded fluorescent sensors reveal dynamic regulation of NADPH metabolism. Nat. Methods 14, 720–728 (2017).

    Article  Google Scholar 

  158. Zhao, Y. et al. Genetically encoded fluorescent sensors for intracellular NADH detection. Cell Metab. 14, 555–566 (2011).

    Article  Google Scholar 

  159. Srivastava, A., Mallela, K. M. G., Deorkar, N. & Brophy, G. Manufacturing challenges and rational formulation development for AAV viral vectors. J. Pharm. Sci. 110, 2609–2624 (2021).

    Article  Google Scholar 

  160. Zhang, J.-H., Shan, L.-L., Liang, F., Du, C.-Y. & Li, J.-J. Strategies and considerations for improving recombinant antibody production and quality in Chinese hamster ovary cells. Front. Bioeng. Biotechnol. 10, 856049 (2022).

    Article  Google Scholar 

  161. Kawalekar, O. U. et al. Distinct signaling of coreceptors regulates specific metabolism pathways and impacts memory development in CAR T cells. Immunity 44, 380–390 (2016).

    Article  Google Scholar 

  162. Weber, E. W. et al. Transient rest restores functionality in exhausted CAR-T cells through epigenetic remodeling. Science 372, eaba1786 (2021).

    Article  Google Scholar 

  163. Eyquem, J. et al. Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature 543, 113–117 (2017).

    Article  Google Scholar 

  164. Franco, F., Jaccard, A., Romero, P., Yu, Y.-R. & Ho, P.-C. Metabolic and epigenetic regulation of T-cell exhaustion. Nat. Metab. 2, 1001–1012 (2020).

    Article  Google Scholar 

  165. McKinney, E. F. & Smith, K. G. C. Metabolic exhaustion in infection, cancer and autoimmunity. Nat. Immunol. 19, 213–221 (2018).

    Article  Google Scholar 

  166. Cao, Y. et al. ER stress-induced mediator C/EBP homologous protein thwarts effector T cell activity in tumors through T-bet repression. Nat. Commun. 10, 1280 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the Engineering and Physical Sciences Research Council (EPSRC) Centre for Doctoral Training in BioDesign Engineering (EP/S022856/1) (to J.G., C.K., T.E., R.L.-A. and F.C.). R.D.B. was supported by the Imperial College Chemical Engineering PhD scholarship. R.L.-A. received funding from the European Research Council (ERC) (DEUSBIO-949080). K.S. acknowledges a postdoctoral fellowship from the European Molecular Biology Organization (EMBO) (ALTF 769-2021) and a UKRI-Marie Skłodowska-Curie Actions (UKRI-MSCA) Postdoctoral Fellowship (UNICOH).

Author information

Authors and Affiliations

Authors

Contributions

R.D.B., T.E. and F.C. conceived the work. I.Z. contributed background literature research. All authors wrote and edited the manuscript.

Corresponding author

Correspondence to Francesca Ceroni.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Bioengineering thanks Tom de Greef, Tara Deans and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Blasi, R., Gabrielli, J., Shabestary, K. et al. Understanding resource competition to achieve predictable synthetic gene expression in eukaryotes. Nat Rev Bioeng (2024). https://doi.org/10.1038/s44222-024-00206-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s44222-024-00206-0

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research