Skip to main content

Advertisement

Log in

Development and validation of a universal primer pair for the taxonomic and phylogenetic studies of vertebrates

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Recent studies in the field of molecular identification have described 16S rRNA gene as a highly informative fragment of mitochondrial DNA for species discrimination. This study presents a newly developed universal primer pair yielding an approximately 350 bp fragment of mitochondrial 16S rRNA, variable enough to encompass and identify all vertebrate classes.

Methods and results

The primers were designed by aligning and analyzing over 1500 16S rRNA sequences downloaded from the NCBI nucleotide database. A total of 93 vertebrate species, spanning 27 orders and 55 families, were PCR-amplified to validate the primers. All the target species were successfully amplified and identified when aligned with reference sequences from the NCBI nucleotide database. Using the Kimura 2-parameter model, low intra-species genetic divergence of the target region was observed – from 0 to 4.63%, whereas relatively higher inter-species genetic divergence was observed, ranging from 4.88% to 69.81%. Moreover, the newly developed primers were successfully applied to a direct PCR protocol, making the workflow very cost-effective, time-saving and less laborious in comparison to conventional PCR.

Conclusions

The short length, high variability and conserved priming sites of the target fragment across all vertebrate species make it a highly desirable marker for species identification and discrimination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Habibi K, Cowasjee D, Hanif S (1997) Biological diversity in Pakistan. The World Conservation Union (IUCN), Pakistan

  2. Molur S, Srinivasulu C, Srinivasulu B, Walker S, Nameer PO, Ravikumar L (2005) Status of south Asian non-volant small mammals: conservation assessment and management plan (CAMP) workshop report. Zoo Outreach Organization/CBSG-South Asia, Coimbatore, India, 618pp

  3. Lepage D (2021) Checklist of the birds of Pakistan. Avibase, the world bird database. Retrieved from: https://avibase.bsceoc.org/checklist.jsp?lang=EN&region=pk&list=clements&format=1 [19/09/2021]

  4. Ali W, Javid A, Hussain A, Bukhari SM (2018) Diversity and habitat preferences of amphibians and reptiles in Pakistan: a review. J Asia Pac Biodivers 11(2):173–187. https://doi.org/10.1016/j.japb.2018.01.009

    Article  Google Scholar 

  5. Molur S (2008) South Asian amphibians: taxonomy, diversity and conservation status. Int Zoo Yearbook 42(1):143–157

    Article  Google Scholar 

  6. FishBase (2021) Froese R, Pauly D. Editors. World Wide Web electronic publication. www.fishbase.org, version (06/2021)

  7. Naseem A, Batool S, Abbas FI (2020) Utility of mitochondrial COI gene for identification of wild ungulate species of conservational importance from Pakistan. Mitochondrial DNA B Resour 5(2):1924–8

    Article  Google Scholar 

  8. Iqbal M, Saleem MS, Imran M, Khan WA, Ashraf K, Yasir Zahoor M, Rashid I, Rehman HU, Nadeem A, Ali S, Naz S (2020) Single tube multiplex PCR assay for the identification of banned meat species. Food Addit Contam Part B Surveill 13(4):284–91

    Article  CAS  PubMed  Google Scholar 

  9. Khan FM, William K, Aruge S, Janjua S, Shah SA (2018) Illegal product manufacturing and exportation from Pakistan: revealing the factuality of highly processed wildlife skin samples via DNA mini-barcoding. Nucleosides Nucleotides Nucleic Acids 37(3):179–85

    Article  CAS  PubMed  Google Scholar 

  10. Hacker CE, Jevit M, Hussain S, Muhammad G, Munkhtsog B, Munkhtsog B, Janecka JE (2021) Regional comparison of snow leopard (Panthera uncia) diet using DNA metabarcoding. Biodivers Conserv 30(3):797–817

    Article  Google Scholar 

  11. Wolf C, Rentsch J, Hubner P (1999) PCR-RFLP analysis of mitochondrial DNA: a reliable method for species identification. J Agric Food Chem 47:1350–1355

    Article  CAS  PubMed  Google Scholar 

  12. Naidu A, Fitak RR, Munguia-Vega A, Culver M (2012) Novel primers for complete mitochondrial cytochrome b gene sequencing in mammals. Mol Ecol Resour 12(2):191–196. https://doi.org/10.1111/j.1755-0998.2011.03078.x

    Article  CAS  PubMed  Google Scholar 

  13. Savolainen V, Cowan R, Vogler A, Roderick G, Lane R (2005) Towards writing the encyclopedia of life: an introduction to DNA barcoding. Philos Trans R Soc Lond B Biol Sci 360(1462):1805–1811. https://doi.org/10.1098/rstb.2005.1730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Xie J, Zhu W, Zhou Y, Liu Z, Chen Y, Zhao Z (2015) Identification of mammalian species using the short and highly variable regions of mitochondrial DNA. Mitochon DNA A DNA Mapp Seq Anal 26:550–554

    Article  CAS  Google Scholar 

  15. Deagle BE, Jarman SN, Coissac E, Pompanon F, Taberlet P (2014) DNA metabarcoding and the cytochrome c oxidase subunit I marker: not a perfect match. Biol Lett 10(9):20140562. https://doi.org/10.1098/rsbl.2014.0562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ficetola GF, Coissac E, Zundel S, Riaz T, Shehzad W, Bessière J, Taberlet P, Pompanon F (2010) An in silico approach for the evaluation of DNA barcodes. BMC Genom 11(1):434. https://doi.org/10.1186/1471-2164-11-434

    Article  CAS  Google Scholar 

  17. Foran DR, Fischer AB, Stoloff ME (2015) A Comparison of Mitochondrial DNA Amplification Strategies for Species Identification. J Forensic Investig 3(2):7

    Google Scholar 

  18. Lopez-Oceja A, Nuñez C, Baeta M, Gamarra D, de Pancorbo MM (2017) Species identification in meat products: a new screening method based on high resolution melting analysis of cyt b gene. Food Chem 237:701–706

    Article  CAS  PubMed  Google Scholar 

  19. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek AR (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–299

    CAS  PubMed  Google Scholar 

  20. Parson W, Pegoraro K, Niederstätter H, Föger M, Steinlechner M (2000) Species identification by means of the cytochrome b gene. Int J Legal Med 114(1):23–8

    Article  CAS  PubMed  Google Scholar 

  21. Lemer S, Aurelle D, Vigliola L, Durand JD, Borsa P (2007) Cytochrome b barcoding, molecular systematics and geographic differentiation in rabbitfishes (Siganidae). C R Biol 330(1):86–94

    CAS  PubMed  Google Scholar 

  22. Rastogi G, Dharne M, Bharde A, Pandav VS, Ghumatkar SV, Krishnamurthy R, Patole MS, Shouche YS (2004) Species determination and authentication of meat samples by mitochondrial 12S rRNA gene sequence analysis and conformation-sensitive gel electrophoresis. Curr Sci 10:1278–1281

    Google Scholar 

  23. Feng Y, Li Q, Kong L, Zheng X (2011) DNA barcoding and phylogenetic analysis of Pectinidae (Mollusca: Bivalvia) based on mitochondrial COI and 16S rRNA genes. Mol Biol Rep 38(1):291–299. https://doi.org/10.1007/s11033-010-0107-1

    Article  CAS  PubMed  Google Scholar 

  24. Yang L, Tan Z, Wang D, Xue L, Guan MX, Huang T, Li R (2014) Species identification through mitochondrial rRNA genetic analysis. Sci Rep 4(1):4089

    Article  PubMed  PubMed Central  Google Scholar 

  25. Falade MO, Opene AJ, Benson O (2016) DNA barcoding of Clarias gariepinus, Coptodon zillii and Sarotherodon melanotheron from Southwestern Nigeria. F1000Res 5:1268. https://doi.org/10.12688/f1000research.7895.1

  26. Jogayya KN, Meganathan PR, Dubey B, Haque I (2013) Mitochondrial 16S ribosomal RNA gene for forensic identification of crocodile species. J Forensic Leg Med 20(4):334–338

    Article  Google Scholar 

  27. Wijayathilaka N, Garg S, Senevirathne G, Karunarathna N, Biju SD, Meegaskumbura M (2016) A new species of Microhyla (Anura: Microhylidae) from Sri Lanka: an integrative taxonomic approach. Zootaxa 4066(3):331–342

    Article  PubMed  Google Scholar 

  28. Natonek-Wiśniewska M, Krzyścin P, Piestrzyńska-Kajtoch A (2013) The species identification of bovine, porcine, ovine and chicken components in animal meals, feeds and their ingredients, based on COX I analysis and ribosomal DNA sequences. Food Cont 34(1):69–78

    Article  Google Scholar 

  29. Gonçalves PF, Oliveira-Marques AR, Matsumoto TE, Miyaki CY (2015) DNA barcoding identifies illegal parrot trade. J Hered 106(S1):560–564. https://doi.org/10.1093/jhered/esv035

    Article  CAS  PubMed  Google Scholar 

  30. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Riaz T, Shehzad W, Viari A, Pompanon F, Taberlet P, Coissac E (2011) ecoPrimers: inference of new DNA barcode markers from whole genome sequence analysis. Nucleic Acids Res 39(21):e145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

    Article  CAS  PubMed  Google Scholar 

  33. Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Kitano T, Umetsu K, Tian W, Osawa M (2007) Two universal primer sets for species identification among vertebrates. Int J legal med 121(5):423–427

    Article  PubMed  Google Scholar 

  35. Taniguchi K, Akutsu T, Watanabe K, Ogawa Y, Imaizumi K (2022) A vertebrate-specific qPCR assay as an endogenous internal control for robust species identification. Forensic Sci Int Genet 56:102628. https://doi.org/10.1016/j.fsigen.2021.102628

    Article  CAS  PubMed  Google Scholar 

  36. Pinol J, Mir G, Gomez-Polo P, Agusti N (2015) Universal and blocking primer mismatches limit the use of high-throughput DNA sequencing for the quantitative metabarcoding of arthropods. Mol Ecol Resour 15(4):819–830. https://doi.org/10.1111/1755-0998.12355

    Article  CAS  PubMed  Google Scholar 

  37. Stadhouders R, Pas SD, Anber J, Voermans J, Mes TH, Schutten M (2010) The effect of primer-template mismatches on the detection and quantification of nucleic acids using the 5′ nuclease assay. J Mol Diagn 12(1):109–117. https://doi.org/10.2353/jmoldx.2010.090035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bru D, Martin-Laurent F, Philippot L (2008) Quantification of the detrimental effect of a single primer-template mismatch by real-time PCR using the 16S rRNA gene as an example. Appl Environ Microbiol 74(5):1660–1663. https://doi.org/10.1128/AEM.02403-07

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kwok S, Kellogg DE, McKinney N, Spasic D, Goda L, Levenson C, Sninsky JJ (1990) Effects of primer-template mismatches on the polymerase chain reaction- human immunodeficiency virus type 1 model studies. Nucleic Acids Res 18(4):999–1005. https://doi.org/10.1093/nar/18.4.999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Whiley DM, Sloots TP (2005) Sequence variation in primer targets affects the accuracy of viral quantitative PCR. J Clin Virol 34(2):104–107. https://doi.org/10.1016/j.jcv.2005.02.010

    Article  CAS  PubMed  Google Scholar 

  41. Kitpipit T, Chotigeat W, Linacre A, Thanakiatkrai P (2014) Forensic animal DNA analysis using economical two-step direct PCR. Forensic Sci Med Pathol 10(1):29–38. https://doi.org/10.1007/s12024-013-9521-8

    Article  CAS  PubMed  Google Scholar 

  42. Videvall E, Strandh M, Engelbrecht A, Cloete S, Cornwallis CK (2017) Direct PCR offers a fast and reliable alternative to conventional DNA isolation methods for gut microbiomes. mSystems 2(6). https://doi.org/10.1128/mSystems.00132-17

  43. Thongjued K, Chotigeat W, Bumrungsri S, Thanakiatkrai P, Kitpipit T (2019) A new cost-effective and fast direct PCR protocol for insects based on PBS buffer. Mol Ecol Resour 19(3):691–701. https://doi.org/10.1111/1755-0998.13005

    Article  CAS  PubMed  Google Scholar 

  44. Jafar S, Waheed F, Anjum KM, Shehzad W, Imran M (2023) A low-cost closed-tube method for detection of adulteration in ground meat. Food Biotechnol 37(1):25–40. https://doi.org/10.1080/08905436.2022.2163250

    Article  CAS  Google Scholar 

  45. Jafar S, Kabir F, Anjum KM, Zahoor MY, Shehzad W, Imran M (2023) Comparison of different DNA preparatory methods for development of a universal direct PCR-RFLP workflow for identification of meat origin in food products. Food Sci Technol 16:43

    Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

SJ carried out the experiments, collected the data, performed data analysis and wrote the manuscript. WS and KMA supervised and verified the experimental results and revised the manuscript. MYZ and AN provided technical support and revised the manuscript. MI designed the methodology, performed data analysis, supervised the experiments and revised the manuscript. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Muhammad Imran.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

This study does not contain experiments that involve human or animals, and the authors have collected all the tissue samples from the postmortem department of University of Veterinary and Animal Sciences, Lahore.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jafar, S., Anjum, K.M., Zahoor, M.Y. et al. Development and validation of a universal primer pair for the taxonomic and phylogenetic studies of vertebrates. Mol Biol Rep 51, 332 (2024). https://doi.org/10.1007/s11033-023-09175-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-023-09175-w

Keywords

Navigation