Skip to main content

Advertisement

Log in

Forensic animal DNA analysis using economical two-step direct PCR

  • Original Article
  • Published:
Forensic Science, Medicine, and Pathology Aims and scope Submit manuscript

Abstract

Wildlife forensic DNA analysis by amplification of a mitochondrial locus followed by DNA sequencing is routine, yet suffers from being costly and time-consuming. To address these disadvantages we report on a low-cost two-step direct PCR assay to efficiently analyze 12 forensically relevant mammalian sample types without DNA extraction. A cytochrome oxidase I degenerate-universal primer pair was designed and validated for the developed assay. The 12 sample types, which included bone, horn, feces, and urine, were amplified successfully by the assay using a pre-direct PCR dilution protocol. The average amplification success rate was as high as 92.5 % (n = 350), with an average PCR product concentration of 220.71 ± 180.84 ng/μL. Differences in amplification success rate and PCR product quantity between sample types were observed; however, most samples provided high quality sequences, permitting a 100 % nucleotide similarity to their respective species via BLAST database queries. The combination of PBS and Phire® Hot Start II DNA polymerase gave comparable amplification success rate and amplicon quantity with the proprietary commercial kits (P > 0.05, n = 350) but at considerably lower cost. The stability of the assay was tested by successfully amplifying samples that had been stored for up to 12 months. Our data indicate that this low-cost two-step direct amplification assay has the potential to be a valuable tool for the forensic DNA community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lee JC, Hsieh HM, Huang LH, Kuo YC, Wu JH, Chin SC, et al. Ivory identification by DNA profiling of cytochrome b gene. Int J Legal Med. 2009;123(2):117–21.

    Article  PubMed  Google Scholar 

  2. Hsieh HM, Huang LH, Tsai LC, Kuo YC, Meng HH, Linacre A, et al. Species identification of rhinoceros horns using the cytochrome b gene. Forensic Sci Int. 2003;136(1–3):1–11.

    CAS  PubMed  Google Scholar 

  3. Wan QH, Fang SG. Application of species-specific polymerase chain reaction in the forensic identification of tiger species. Forensic Sci Int. 2003;131(1):75–8.

    Article  CAS  PubMed  Google Scholar 

  4. Deagle BE, Eveson JP, Jarman SN. Quantification of damage in DNA recovered from highly degraded samples-a case study on DNA in faeces. Front Zool. 2006;3:11.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Stroud RK. Wildlife Forensics and the Veterinary Practitioner. Sem Avian Exotic Pet Med. 1998;7(4):182–92.

    Article  Google Scholar 

  6. Alacs EA, Georges A, FitzSimmons NN, Robertson J. DNA detective: a review of molecular approaches to wildlife forensics. Forensic Sci Med Pathol. 2010;6(3):180–94.

    Article  CAS  PubMed  Google Scholar 

  7. Linacre A. Forensic Science in Wildlife Investigations. 1st ed. Boca Raton: CRC Press; 2009.

    Book  Google Scholar 

  8. Hsieh HM, Chiang HL, Tsai LC, Lai SY, Huang NE, Linacre A, et al. Cytochrome b gene for species identification of the conservation animals. Forensic Sci Int. 2001;122(1):7–18.

    Article  CAS  PubMed  Google Scholar 

  9. Smith MA, Poyarkov NA Jr, Hebert PD. DNA barcoding: CO1 DNA barcoding amphibians: take the chance, meet the challenge. Mol Ecol Resour. 2008;8(2):235–46.

    Article  CAS  PubMed  Google Scholar 

  10. Hebert PD, Cywinska A, Ball SL, deWaard JR. Biological identifications through DNA barcodes. Proc Biol Sci. 2003;270(1512):313–21.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Wolf C, Rentsch J, Hubner P. PCR-RFLP analysis of mitochondrial DNA: a reliable method for species identification. J Agric Food Chem. 1999;47(4):1350–5.

    Article  CAS  PubMed  Google Scholar 

  12. Mukherjee N, Mondol S, Andheria A, Ramakrishnan U. Rapid multiplex PCR based species identification of wild tigers using non-invasive samples. Conserv Genet. 2007;8(6):1465–70.

    Article  CAS  Google Scholar 

  13. Rönn A, Andrés O, López-Giráldez F, Johnsson-Glans C. First generation microarray-system for identification of primate species subject to bushmeat trade. Endanger Species Res. 2009;6:133–42.

    Article  Google Scholar 

  14. Kanthaswamy S, Premasuthan A, Ng J, Satkoski J, Goyal V. Quantitative real-time PCR (qPCR) assay for human-dog-cat species identification and nuclear DNA quantification. Forensic Sci Int Genet. 2012;6:290–5.

    Article  CAS  PubMed  Google Scholar 

  15. Balitzki-Korte B, Anslinger K, Bartsch C, Rolf B. Species identification by means of pyrosequencing the mitochondrial 12S rRNA gene. Int J Legal Med. 2005;119(5):291–4.

    Article  CAS  PubMed  Google Scholar 

  16. Bartlett SE, Davidson WS. FINS (forensically informative nucleotide sequencing): a procedure for identifying the animal origin of biological specimens. Biotechniques. 1992;13(4):518.

    CAS  PubMed  Google Scholar 

  17. Sahajpal V, Goyal SP. Identification of a forensic case using microscopy and forensically informative nucleotide sequencing (FINS): a case study of small Indian civet (Viverricula indica). Sci Justice. 2010;50(2):94–7.

    Article  CAS  PubMed  Google Scholar 

  18. Irwin DM, Kocher TD, Wilson AC. Evolution of the cytochrome b gene of mammals. J Mol Evol. 1991;32(2):128–44.

    Article  CAS  PubMed  Google Scholar 

  19. Kocher TD, Thomas WK, Meyer A, Edwards SV, Paabo S, Villablanca FX, et al. Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proc Natl Acad Sci USA. 1989;86(16):6196–200.

    Article  CAS  PubMed  Google Scholar 

  20. Parson W, Pegoraro K, Niederstatter H, Foger M, Steinlechner M. Species identification by means of the cytochrome b gene. Int J Legal Med. 2000;114(1–2):23–8.

    Article  CAS  PubMed  Google Scholar 

  21. Verma SK, Singh L. Novel universal primers establish identity of an enormous number of animal species for forensic application. Mol Ecol Notes. 2003;3(1):28–31.

    Article  CAS  Google Scholar 

  22. Kermekchiev MB, Kirilova LI, Vail EE, Barnes WM. Mutants of Taq DNA polymerase resistant to PCR inhibitors allow DNA amplification from whole blood and crude soil samples. Nucleic Acids Res. 2009;37(5):e40.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Zhang Z, Kermekchiev MB, Barnes WM. Direct DNA amplification from crude clinical samples using a PCR enhancer cocktail and novel mutants of Taq. J Mol Diagn. 2010;12(2):152–61.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Ottens R, Taylor D, Abarno D, Linacre A. Successful direct amplification of nuclear markers from a single hair follicle. Forensic Sci Med Pathol. 2013;9(2):238–43.

    Article  CAS  PubMed  Google Scholar 

  25. Fode-Vaughan KA, Maki JS, Benson JA, Collins ML. Direct PCR detection of Escherichia coli O157:H7. Lett Appl Microbiol. 2003;37(3):239–43.

    Article  CAS  PubMed  Google Scholar 

  26. Gindro K, Pezet R, Viret O, Richter H. Development of a rapid and highly sensitive direct-PCR assay to detect a single conidium of Botrytis cinerea Pers.:Fr in vitro and quiescent forms in planta. Vitis. 2005;44(3):139–42.

    CAS  Google Scholar 

  27. Tjhie JH, van Kuppeveld FJ, Roosendaal R, Melchers WJ, Gordijn R, MacLaren DM, et al. Direct PCR enables detection of Mycoplasma pneumoniae in patients with respiratory tract infections. J Clin Microbiol. 1994;32(1):11–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  28. World Wide Fund. Wildlife Crime Scorecard: World Wide Fund 2012.

  29. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011;28(10):2731–9.

    Article  CAS  PubMed  Google Scholar 

  30. McGinnis S, Madden TL. BLAST: at the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res. 2004;32:W20–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Goldenberger D, Perschil I, Ritzler M, Altwegg M. A simple, “Universal” DNA extraction procedure using SDS and proteinase K is compatible with direct PCR amplification. Genome Res. 1995;4:368–70.

    Article  CAS  Google Scholar 

  32. Kim SA, Yoon JA, Kang MJ, Choi YM, Chae SJ, Moon SY. An efficient and reliable DNA extraction method for preimplantation genetic diagnosis: a comparison of allele drop out and amplification rates using different single cell lysis methods. Fertil Steril. 2009;92(2):814–8.

    Article  CAS  PubMed  Google Scholar 

  33. Linacre A, Tobe S. Wildlife DNA analysis: applications in forensic science. Oxford: Wiley; 2013.

    Book  Google Scholar 

  34. Roux KH. Optimization and troubleshooting in PCR. Cold Spring Harb Protoc. 2009;. doi:10.1101/pdb.ip66.

    PubMed  Google Scholar 

  35. Moretti T, Koons B, Budowle B. Enhancement of PCR amplification yield and specificity using AmpliTaq Gold DNA polymerase. Biotechniques. 1998;25(4):716–22.

    CAS  PubMed  Google Scholar 

  36. Wang Y, Prosen DE, Mei L, Sullivan JC, Finney M. Vander Horn PB. A novel strategy to engineer DNA polymerases for enhanced processivity and improved performance in vitro. Nucleic Acids Res. 2004;32(3):1197–207.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Thermo Scientific. Phusion High-Fidelity DNA Polymerase. 2013. http://www.thermoscientificbio.com/pcr-enzymes-master-mixes-and-reagents/phusion-high-fidelity-dna-polymerase/. Accessed 10 January 2013.

  38. Hedman J, Dufva C, Norén L, Ansell C, Albinsson L, Ansell R. Applying a PCR inhibitor tolerant DNA polymerase blend in forensic DNA profiling. Forensic Sci Int Genet Suppl Series. 2011;3(1):e349–50.

    Article  Google Scholar 

  39. Hedman J, Nordgaard A, Dufva C, Rasmusson B, Ansell R, Radstrom P. Synergy between DNA polymerases increases polymerase chain reaction inhibitor tolerance in forensic DNA analysis. Anal Biochem. 2010;405(2):192–200.

    Article  CAS  PubMed  Google Scholar 

  40. Hedman J, Nordgaard A, Rasmusson B, Ansell R, Radstrom P. Improved forensic DNA analysis through the use of alternative DNA polymerases and statistical modeling of DNA profiles. Biotechniques. 2009;47(5):951–8.

    Article  CAS  PubMed  Google Scholar 

  41. Bengtsson CF, Olsen ME, Brandt LO, Bertelsen MF, Willerslev E, Tobin DJ, et al. DNA from keratinous tissue. Part I: hair and nail. Ann Anat. 2012;194(1):17–25.

    Article  CAS  PubMed  Google Scholar 

  42. Bessetti J. An introduction to PCR inhibitors. Profiles in DNA. 2007;10(1):9–10.

    Google Scholar 

  43. Opel KL, Chung D, McCord BR. A study of PCR inhibition mechanisms using real time PCR. J Forensic Sci. 2010;55(1):25–33.

    Article  CAS  PubMed  Google Scholar 

  44. Lee HC, Ladd C. Preservation and collection of biological evidence. Croat Med J. 2001;42(3):225–8.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support of the Prince of Songkla University Research Fund (Grant no. SCI550385S) for TK and WC. We are in debt to Mr. Yingyong Lapwong and Mr. Sukone Pradutkanchana for the voucher specimens. We also appreciate the help of the Princess Maha Chakri Sirindhorn Natural History Museum, Thailand; the Songkhla Zoo, Thailand; the Sawaddee Deer Park, Thailand; and the Chang-Puak Elephant Camp, Thailand, in contributing samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thitika Kitpipit.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kitpipit, T., Chotigeat, W., Linacre, A. et al. Forensic animal DNA analysis using economical two-step direct PCR. Forensic Sci Med Pathol 10, 29–38 (2014). https://doi.org/10.1007/s12024-013-9521-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12024-013-9521-8

Keywords

Navigation