Issue published July 8, 2024

  • On the cover: Interferon-λ uniquely promotes CD8 T cell immunity against SARS-CoV-2 relative to type I interferon
  • Solstad et al. utilize a model of mouse-adapted SARS-CoV-2 to show that type III interferon signaling regulates DC function to promote SARS-CoV-2–specific CD8 T cell responses. The cover art shows images of murine lungs with broad distribution of SARS-CoV-2 nucleocapsid antigen in the absence of IFN-λ signaling following infection.

Research Articles
Abstract

Acute pancreatitis (AP) is among the most common hospital gastrointestinal diagnoses; understanding the mechanisms underlying the severity of AP is critical for development of new treatment options for this disease. Here, we evaluate the biological function of phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) in AP pathogenesis in 2 independent genetically engineered mouse models of AP. PFKFB3 was elevated in AP and severe AP (SAP), and KO of Pfkfb3 abrogated the severity of alcoholic SAP (FAEE-SAP). Using a combination of genetic, pharmacological, and molecular studies, we defined the interaction of PFKFB3 with inositol 1,4,5-trisphosphate receptor (IP3R) as a key event mediating this phenomenon. Further analysis demonstrated that the interaction between PFKFB3 and IP3R promotes FAEE-SAP severity by altering intracellular calcium homeostasis in acinar cells. Together, our results support a PFKFB3-driven mechanism controlling AP pathobiology and define this enzyme as a therapeutic target to ameliorate the severity of this condition.

Authors

Tan Zhang, Shengchuan Chen, Liang Li, Yuepeng Jin, Siying Liu, Zhu Liu, Fengyu Shi, Lifen Xie, Panpan Guo, Andrew C. Cannon, Akmal Ergashev, Haiping Yao, Chaohao Huang, Baofu Zhang, Lijun Wu, Hongwei Sun, Siming Chen, Yunfeng Shan, Zhengping Yu, Ezequiel J. Tolosa, Jianghuai Liu, Martin E. Fernandez-Zapico, Feng Ma, Gang Chen

×

Abstract

Optimization of protective immune responses against SARS-CoV-2 remains an urgent worldwide priority. In this regard, type III IFN (IFN-λ) restricts SARS-CoV-2 infection in vitro, and treatment with IFN-λ limits infection, inflammation, and pathogenesis in murine models. Furthermore, IFN-λ has been developed for clinical use to limit COVID-19 severity. However, whether endogenous IFN-λ signaling has an effect on SARS-CoV-2 antiviral immunity and long-term immune protection in vivo is unknown. In this study, we identified a requirement for IFN-λ signaling in promoting viral clearance and protective immune programming in SARS-CoV-2 infection of mice. Expression of both IFN and IFN-stimulated gene (ISG) in the lungs were minimally affected by the absence of IFN-λ signaling and correlated with transient increases in viral titers. We found that IFN-λ supported the generation of protective CD8 T cell responses against SARS-CoV-2 by facilitating accumulation of CD103+ DC in lung draining lymph nodes (dLN). IFN-λ signaling specifically in DCs promoted the upregulation of costimulatory molecules and the proliferation of CD8 T cells. Intriguingly, antigen-specific CD8 T cell immunity to SARS-CoV-2 was independent of type I IFN signaling, revealing a nonredundant function of IFN-λ. Overall, these studies demonstrate a critical role for IFN-λ in protective innate and adaptive immunity upon infection with SARS-CoV-2 and suggest that IFN-λ serves as an immune adjuvant to support CD8 T cell immunity.

Authors

Abigail D. Solstad, Parker J. Denz, Adam D. Kenney, Najmus S. Mahfooz, Samuel Speaks, Qiaoke Gong, Richard T. Robinson, Matthew E. Long, Adriana Forero, Jacob S. Yount, Emily A. Hemann

×

Abstract

Fibrinogen-like protein 1 (FGL1) contributes to the proliferation and metabolism of hepatocytes; however, as a major ligand of the immune checkpoint, its role in the liver regional immune microenvironment is poorly understood. Hepatocytes specifically and highly expressed FGL1 under normal physiological conditions. Increases in hepatic CD8+ T and NK cell numbers and functions were found in Fgl1-deficient (Fgl1–/–) mice, but not in the spleen or lymph node, similar to findings in anti-FGL1 mAb–treated wild-type mice. Furthermore, Fgl1 deficiency or anti-FGL1 mAb blockade restrained liver metastasis and slowed the growth of orthotopic tumors, with significantly prolonged survival of tumor-bearing mice. Tumor-infiltrating hepatic CD8+ T and NK cells upregulated the expression of lymphocyte activation gene-3 (LAG-3) and exhibited stronger antitumor activities after anti-FGL1 treatment. The antitumor efficacy of FGL1 blockade depended on cytotoxic T lymphocytes and NK cells, demonstrated by using a cell-deficient mouse model and cell transfer in vivo. In vitro, FGL1 directly inhibited hepatic T and NK cells related to the receptor LAG-3. In conclusion, hepatocyte-derived FGL1 played critical immunoregulatory roles in the liver and contributed to liver metastasis and tumor growth by inhibiting CD8+ T and NK cell functions via the receptor LAG-3, providing a new strategy for liver cancer immunotherapy.

Authors

Fengjia Xi, Haoyu Sun, Hui Peng, Zhexiong Lian, Haiming Wei, Zhigang Tian, Rui Sun, Yongyan Chen

×

Abstract

Lipoprotein lipase (LPL) hydrolyzes circulating triglycerides (TGs), releasing fatty acids (FA) and promoting lipid storage in white adipose tissue (WAT). However, the mechanisms regulating adipose LPL and its relationship with the development of hypertriglyceridemia are largely unknown. WAT from obese humans exhibited high PAR2 expression, which was inversely correlated with the LPL gene. Decreased LPL expression was also inversely correlated with elevated plasma TG levels, suggesting that adipose PAR2 might regulate hypertriglyceridemia by downregulating LPL. In mice, aging and high palmitic acid diet (PD) increased PAR2 expression in WAT, which was associated with a high level of macrophage migration inhibitory factor (MIF). MIF downregulated LPL expression and activity in adipocytes by binding with CXCR2/4 receptors and inhibiting Akt phosphorylation. In a MIF overexpression model, high-circulating MIF levels suppressed adipose LPL, and this suppression was associated with increased plasma TGs but not FA. Following PD feeding, adipose LPL expression and activity were significantly reduced, and this reduction was reversed in Par2–/– mice. Recombinant MIF infusion restored high plasma MIF levels in Par2–/– mice, and the levels decreased LPL and attenuated adipocyte lipid storage, leading to hypertriglyceridemia. These data collectively suggest that downregulation of adipose LPL by PAR2/MIF may contribute to the development of hypertriglyceridemia.

Authors

Yiheng Huang, Liujun Chen, Lisha Li, Yadan Qi, Haibin Tong, Hong Wu, Jinjie Xu, Lin Leng, Sukhinder Cheema, Guang Sun, Zhengyuan Xia, John McGuire, Brian Rodrigues, Lawrence H. Young, Richard Bucala, Dake Qi

×

Abstract

The nonphysiological nutrient levels found in traditional culture media have been shown to affect numerous aspects of cancer cell physiology, including how cells respond to certain therapeutic agents. Here, we comprehensively evaluated how physiological nutrient levels affect therapeutic response by performing drug screening in human plasma-like medium. We observed dramatic nutrient-dependent changes in sensitivity to a variety of FDA-approved and clinically trialed compounds, including rigosertib, an experimental cancer therapeutic that recently failed in phase III clinical trials. Mechanistically, we found that the ability of rigosertib to destabilize microtubules is strongly inhibited by the purine metabolism end product uric acid, which is uniquely abundant in humans relative to traditional in vitro and in vivo cancer models. These results demonstrate the broad and dramatic effects nutrient levels can have on drug response and how incorporation of human-specific physiological nutrient medium might help identify compounds whose efficacy could be influenced in humans.

Authors

Vipin Rawat, Patrick DeLear, Prarthana Prashanth, Mete Emir Ozgurses, Anteneh Tebeje, Philippa A. Burns, Kelly O. Conger, Christopher Solís, Yasir Hasnain, Anna Novikova, Jennifer E. Endress, Paloma González-Sánchez, Wentao Dong, Greg Stephanopoulos, Gina M. DeNicola, Isaac S. Harris, David Sept, Frank M. Mason, Jonathan L. Coloff

×

Abstract

Alloreactive memory, unlike naive, CD8+ T cells resist transplantation tolerance protocols and are a critical barrier to long-term graft acceptance in the clinic. We here show that semiallogeneic pregnancy successfully reprogrammed memory fetus/graft-specific CD8+ T cells (TFGS) toward hypofunction. Female C57BL/6 mice harboring memory CD8+ T cells generated by the rejection of BALB/c skin grafts and then mated with BALB/c males achieved rates of pregnancy comparable with naive controls. Postpartum CD8+ TFGS from skin-sensitized dams upregulated expression of T cell exhaustion (TEX) markers (Tox, Eomes, PD-1, TIGIT, and Lag3). Transcriptional analysis corroborated an enrichment of canonical TEX genes in postpartum memory TFGS and revealed a downregulation of a subset of memory-associated transcripts. Strikingly, pregnancy induced extensive epigenetic modifications of exhaustion- and memory-associated genes in memory TFGS, whereas minimal epigenetic modifications were observed in naive TFGS. Finally, postpartum memory TFGS durably expressed the exhaustion-enriched phenotype, and their susceptibility to transplantation tolerance was significantly restored compared with memory TFGS. These findings advance the concept of pregnancy as an epigenetic modulator inducing hypofunction in memory CD8+ T cells that has relevance not only for pregnancy and transplantation tolerance, but also for tumor immunity and chronic infections.

Authors

Jared M. Pollard, Grace Hynes, Dengping Yin, Malay Mandal, Fotini Gounari, Maria-Luisa Alegre, Anita S. Chong

×

Abstract

Spinal and bulbar muscular atrophy (SBMA) is a slowly progressing disease with limited sensitive biomarkers that support clinical research. We analyzed plasma and serum samples from patients with SBMA and matched healthy controls in multiple cohorts, identifying 40 highly reproducible SBMA-associated proteins out of nearly 3,000 measured. These proteins were robustly enriched in gene sets of skeletal muscle expression and processes related to mitochondria and calcium signaling. Many proteins outperformed currently used clinical laboratory tests (e.g., creatine kinase [CK]) in distinguishing patients from controls and in their correlations with clinical and functional traits in patients. Two of the 40 proteins, Ectodysplasin A2 receptor (EDA2R) and Repulsive guidance molecule A (RGMA), were found to be associated with decreased survival and body weight in a mouse model of SBMA. In summary, we identified what we believe to be a robust and novel set of fluid protein biomarkers in SBMA that are linked with relevant disease features in patients and in a mouse model of disease. Changes in these SBMA-associated proteins could be used as an early predictor of treatment effects in clinical trials.

Authors

Andrew T.N. Tebbenkamp, Spencer B. Huggett, Vittoria Lombardi, Luca Zampedri, Abdullah AlQahtani, Angela Kokkinis, Andrea Malaspina, Carlo Rinaldi, Christopher Grunseich, Pietro Fratta, Vissia Viglietta

×

Abstract

Hypotrichosis is a genetic disorder characterized by a diffuse and progressive loss of scalp and/or body hair. Nonetheless, the causative genes for several affected individuals remain elusive, and the underlying mechanisms have yet to be fully elucidated. Here, we discovered a dominant variant in a disintegrin and a metalloproteinase domain 17 (ADAM17) gene caused hypotrichosis with woolly hair. Adam17 (p.D647N) knockin mice mimicked the hair abnormality in patients. ADAM17 (p.D647N) mutation led to hair follicle stem cell (HFSC) exhaustion and caused abnormal hair follicles, ultimately resulting in alopecia. Mechanistic studies revealed that ADAM17 binds directly to E3 ubiquitin ligase tripartite motif-containing protein 47 (TRIM47). ADAM17 variant enhanced the association between ADAM17 and TRIM47, leading to an increase in ubiquitination and subsequent degradation of ADAM17 protein. Furthermore, reduced ADAM17 protein expression affected the Notch signaling pathway, impairing the activation, proliferation, and differentiation of HFSCs during hair follicle regeneration. Overexpression of Notch intracellular domain rescued the reduced proliferation ability caused by Adam17 variant in primary fibroblast cells.

Authors

Xiaoxiao Wang, Chaolan Pan, Luyao Zheng, Jianbo Wang, Quan Zou, Peiyi Sun, Kaili Zhou, Anqi Zhao, Qiaoyu Cao, Wei He, Yumeng Wang, Ruhong Cheng, Zhirong Yao, Si Zhang, Hui Zhang, Ming Li

×

Abstract

Staphylococcus aureus is a major human pathogen. An effective anti–S. aureus vaccine remains elusive as the correlates of protection are ill-defined. Targeting specific T cell populations is an important strategy for improving anti–S. aureus vaccine efficacy. Potential bottlenecks that remain are S. aureus–induced immunosuppression and the impact this might have on vaccine-induced immunity. S. aureus induces IL-10, which impedes effector T cell responses, facilitating persistence during both colonization and infection. Thus, it was hypothesized that transient targeting of IL-10 might represent an innovative way to improve vaccine efficacy. In this study, IL-10 expression was elevated in the nares of persistent carriers of S. aureus, and this was associated with reduced systemic S. aureus–specific Th1 responses. This suggests that systemic responses are remodeled because of commensal exposure to S. aureus, which negatively implicates vaccine function. To provide proof of concept that targeting immunosuppressive responses during immunization may be a useful approach to improve vaccine efficacy, we immunized mice with T cell–activating vaccines in combination with IL-10–neutralizing antibodies. Blocking IL-10 during vaccination enhanced effector T cell responses and improved bacterial clearance during subsequent systemic and subcutaneous infection. Taken together, these results reveal a potentially novel strategy for improving anti–S. aureus vaccine efficacy.

Authors

Alanna M. Kelly, Karen N. McCarthy, Tracey J. Claxton, Simon R. Carlile, Eoin C. O’Brien, Emilio G. Vozza, Kingston H.G. Mills, Rachel M. McLoughlin

×

Abstract

Prenatal exposure to viral pathogens has been known to cause the development of neuropsychiatric disorders in adulthood. Furthermore, COVID-19 has been associated with a variety of neurological manifestations, raising the question of whether in utero SARS-CoV-2 exposure can affect neurodevelopment, resulting in long-lasting behavioral and cognitive deficits. Using a human ACE2–knock-in mouse model, we have previously shown that prenatal exposure to SARS-CoV-2 at later stages of development leads to fetal brain infection and gliosis in the hippocampus and cortex. In this study, we aimed to determine whether infection of the fetal brain results in long-term neuroanatomical alterations of the cortex and hippocampus or in any cognitive deficits in adulthood. Here, we show that infected mice developed slower and weighed less in adulthood. We also found altered hippocampal and amygdala volume and aberrant newborn neuron morphology in the hippocampus of adult mice infected in utero. Furthermore, we observed sex-dependent alterations in anxiety-like behavior and locomotion, as well as hippocampal-dependent spatial memory. Taken together, our study reveals long-lasting neurological and cognitive changes as a result of prenatal SARS-CoV-2 infection, identifying a window for early intervention and highlighting the importance of immunization and antiviral intervention in pregnant women.

Authors

Courtney L. McMahon, Erin M. Hurley, Aranis Muniz Perez, Manuel Estrada, Daniel J. Lodge, Jenny Hsieh

×

Abstract

Immunosuppression is a common feature of esophageal adenocarcinoma (EAC) and has been linked to poor overall survival (OS). We hypothesized that upstream factors might negatively influence CD3 levels and T cell activity, thus promoting immunosuppression and worse survival. We used clinical data and patient samples of those who progressed from Barrett’s to dysplasia to EAC, investigated gene (RNA-Seq) and protein (tissue microarray) expression, and performed cell biology studies to delineate a pathway impacting CD3 protein stability that might influence EAC outcome. We showed that the loss of both CD3-ε expression and CD3+ T cell number correlated with worse OS in EAC. The gene related to anergy in lymphocytes isoform 1 (GRAIL1), which is the prominent isoform in EACs, degraded (ε, γ, δ) CD3s and inactivated T cells. In contrast, isoform 2 (GRAIL2), which is reduced in EACs, stabilized CD3s. Further, GRAIL1-mediated CD3 degradation was facilitated by interferon-stimulated gene 15 (ISG15), a ubiquitin-like protein. Consequently, the overexpression of a ligase-dead GRAIL1, ISG15 knockdown, or the overexpression of a conjugation-defective ISG15–leucine-arginine-glycine-glycine mutant could increase CD3 levels. Together, we identified an ISG15/GRAIL1/mutant p53 amplification loop negatively influencing CD3 levels and T cell activity, thus promoting immunosuppression in EAC.

Authors

Dyke P. McEwen, Paramita Ray, Derek J. Nancarrow, Zhuwen Wang, Srimathi Kasturirangan, Saeed Abdullah, Ayushi Balan, Rishi Hoskeri, Dafydd Thomas, Theodore S. Lawrence, David G. Beer, Kiran H. Lagisetty, Dipankar Ray

×

Abstract

BACKGROUND Identifying patients with acute kidney injury (AKI) at high risk of chronic kidney disease (CKD) progression remains a challenge.METHODS Kidney transcriptome sequencing was applied to identify the top upregulated genes in mice with AKI. The product of the top-ranking gene was identified in tubular cells and urine in mouse and human AKI. Two cohorts of patients with prehospitalization estimated glomerular filtration rate (eGFR) ≥ 45 mL/min/1.73 m2 who survived over 90 days after AKI were used to derive and validate the predictive models. AKI-CKD progression was defined as eGFR < 60 mL/min/1.73 m2 and with minimum 25% reduction from baseline 90 days after AKI in patients with prehospitalization eGFR ≥ 60 mL/min/1.73 m2. AKI-advanced CKD was defined as eGFR < 30 mL/min/1.73 m2 90 days after AKI in those with prehospitalization eGFR 45–59 mL/min/1.73 m2.RESULTS Kidney cytokeratin 20 (CK20) was upregulated in injured proximal tubular cells and detectable in urine within 7 days after AKI. High concentrations of urinary CK20 (uCK20) were independently associated with the severity of histological AKI and the risk of AKI-CKD progression. In the Test set, the AUC of uCK20 for predicting AKI-CKD was 0.80, outperforming reported biomarkers for predicting AKI. Adding uCK20 to clinical variables improved the ability to predict AKI-CKD progression, with an AUC of 0.90, and improved the risk reclassification.CONCLUSION These findings highlight uCK20 as a useful predictor for AKI-CKD progression and may provide a tool to identify patients at high risk of CKD following AKI.FUNDING National Natural Science Foundation of China, National Key R&D Program of China, 111 Plan, Guangdong Key R&D Program

Authors

Rui Ma, Han Ouyang, Shihong Meng, Jun Liu, Jianwei Tian, Nan Jia, Youhua Liu, Xin Xu, Xiaobing Yang, Fan Fan Hou

×

Abstract

Patients with autoimmune diseases are at higher risk for severe infection due to their underlying disease and immunosuppressive treatments. In this real-world observational study of 463 patients with autoimmune diseases, we examined risk factors for poor B and T cell responses to SARS-CoV-2 vaccination. We show a high frequency of inadequate anti–spike IgG responses to vaccination and boosting in the autoimmune population but minimal suppression of T cell responses. Low IgG responses in B cell–depleted patients with multiple sclerosis (MS) were associated with higher CD8 T cell responses. By contrast, patients taking mycophenolate mofetil (MMF) exhibited concordant suppression of B and T cell responses. Treatments with highest risk for low anti–spike IgG response included B cell depletion within the last year, fingolimod, and combination treatment with MMF and belimumab. Our data show that the mRNA-1273 (Moderna) vaccine is the most effective vaccine in the autoimmune population. There was minimal induction of either disease flares or autoantibodies by vaccination and no significant effect of preexisting anti–type I IFN antibodies on either vaccine response or breakthrough infections. The low frequency of breakthrough infections and lack of SARS-CoV-2–related deaths suggest that T cell immunity contributes to protection in autoimmune disease.

Authors

Erik Anderson, Michael Powell, Emily Yang, Ananya Kar, Tung Ming Leung, Cristina Sison, Rebecca Steinberg, Raven Mims, Ananya Choudhury, Carlo Espinosa, Joshua Zelmanovich, Nkemakonam C. Okoye, Eun Jung Choi, Galina Marder, Sonali Narain, Peter K. Gregersen, Meggan Mackay, Betty Diamond, Todd Levy, Theodoros P. Zanos, Arezou Khosroshahi, Ignacio Sanz, Eline T. Luning Prak, Amit Bar-Or, Joan Merrill, Cristina Arriens, Gabriel Pardo, Joel Guthridge, Judith James, Aimee Payne, Paul J. Utz, Jeremy M. Boss, Cynthia Aranow, Anne Davidson

×

Abstract

The most common subtype of lymphoma globally, diffuse large B cell lymphoma (DLBCL), is a leading cause of cancer death in people with HIV. The restructuring of the T cell compartment because of HIV infection and antiretroviral therapy (ART) may have implications for modern treatment selection, but current understanding of these dynamic interactions is limited. Here, we investigated the T cell response to DLBCL by sequencing the T cell receptor (TCR) repertoire in a cohort of HIV-negative (HIV–), HIV+/ART-experienced, and HIV+/ART-naive patients with DLBCL. HIV+/ART-naive tumor TCR repertoires were more clonal and more distinct from each other than HIV– and HIV+/ART-experienced ones. Further, increased overlap between tumor and blood TCR repertoires was associated with improved survival and HIV/ART status. Our study describes TCR repertoire characteristics for the first time to our knowledge in an African DLBCL cohort and demonstrates contributions of HIV infection and ART exposure to the DLBCL TCR repertoire.

Authors

Sophia M. Roush, Jenny Coelho, Alexander M. Xu, Kaushik Puranam, Marriam Mponda, Edwards Kasonkanji, Maurice Mulenga, Tamiwe Tomoka, Jonathan Galeotti, Amy Brownlee, Hormas Ghadially, Maganizo Chagomerana, Blossom Damania, Matthew Painschab, Akil Merchant, Satish Gopal, Yuri Fedoriw

×

In-Press Preview - More

Abstract

Solid organ transplantation remains the life-saving treatment for end-stage organ failure, but chronic rejection remains a major obstacle to long-term allograft outcomes and has not improved substantially. Tertiary lymphoid organs (TLO) are ectopic lymphoid structures that form under conditions of chronic inflammation, and evidence from human transplantation suggests that TLO regularly form in allografts undergoing chronic rejection. In this study, we utilized a mouse renal transplantation model and manipulation of the lymphotoxin alpha (LTα) – lymphotoxin beta receptor (LTβR) pathway, which is essential for TLO formation, to define the role of TLO in transplantation. We showed that intragraft TLO are sufficient to activate the alloimmune response and mediate graft rejection in a model where the only lymphoid organs are TLO in the allograft. When transplanted to recipients with a normal set of secondary lymphoid organs, the presence of graft TLO or LTα overexpression accelerated rejection. If the LTβR pathway was disrupted in the donor graft, TLO formation was abrogated, and graft survival prolonged. Intravital microscopy of renal TLO demonstrated that local T and B cell activation in TLOs is similar to that observed in secondary lymphoid organs. In summary, we demonstrated that immune activation in TLO contributes to local immune responses, leading to earlier allograft failure. TLO and the LTαβ-LTβR pathway are therefore prime targets to limit local immune responses and prevent allograft rejection. These findings are applicable to other diseases such as autoimmunity or tumors, where either limiting or boosting local immune responses is beneficial and improves disease outcomes.

Authors

Gang Zhang, Neda Feizi, Daqiang Zhao, Latha Halesha, Amanda L. Williams, Parmjeet S. Randhawa, Khodor I. Abou-Daya, Martin H. Oberbarnscheidt

×

Abstract

Upon infection, naïve CD8+ T cells differentiate into cytotoxic effector cells to eliminate the pathogen-infected cells. Although many mechanisms underlying this process have been demonstrated, the regulatory role of chromatin remodel system in this process remains largely unknown. Here we showed that BRD7, a component of the polybromo-associated BRG1-associated factor complex (PBAF), was required for naïve CD8+ T cells to differentiate into functional short-lived effector cells (SLECs) in response to acute infections caused by influenza virus or lymphocytic choriomeningitis virus (LCMV). BRD7-deficiency in CD8+ T cells resulted in profound defects in effector population and functions, thereby impairing viral clearance and host recovery. Further mechanical studies indicated that the expression of BRD7 significantly turned to high from naïve CD8+ T cells to effector cells, bridged BRG1 and PBRM1 to the core module of PBAF complex, consequently facilitating the assembly of PBAF complex rather than BAF complex in the effector cells. The PBAF complex changed the chromatin accessibility at the loci of Tbx21 gene and up-regulated its expression, leading to the maturation of effector T cells. Our research confirms BRD7 and the PBAF complex are key in CD8+ T cell development and present a significant target for advancing immune therapies.

Authors

Feng Huang, Yingtong Lin, Yidan Qiao, Yaochang Yuan, Zhihan Zhong, Baohong Luo, Yating Wu, Jun Liu, Jingliang Chen, Wanying Zhang, Hui Zhang, Bingfeng Liu

×

Abstract

Pulmonary disorders impact 40% to 80% of individuals with obesity. Respiratory muscle dysfunction is linked to these conditions; however, its pathophysiology remains largely undefined. Mice subjected to diet-induced obesity (DIO) develop diaphragmatic weakness. Increased intra-diaphragmatic adiposity and extracellular matrix (ECM) content correlate with reductions in contractile force. Thrombospondin-1 (THBS1) is an obesity-associated matricellular protein linked with muscular damage in genetic myopathies. THBS1 induces proliferation of fibro-adipogenic progenitors (FAPs) — mesenchymal cells that differentiate into adipocytes and fibroblasts. We hypothesized that THBS1 drives FAP-mediated diaphragm remodeling and contractile dysfunction in DIO. We tested this by comparing the effects of dietary challenge on diaphragms of wild-type (WT) and Thbs1 knockout (Thbs1–/–) mice. Bulk and single-cell transcriptomics demonstrated DIO-induced stromal expansion in WT diaphragms. Diaphragm FAPs displayed upregulation of ECM and TGF β-related expression signatures and augmentation of a Thy1-expressing sub-population previously linked to type 2 diabetes. Despite similar weight gain, Thbs1–/– mice were protected from these transcriptomic changes and from obesity-induced increases in diaphragm adiposity and ECM deposition. Unlike WT controls, Thbs1–/– diaphragms maintained normal contractile force and motion after DIO challenge. These findings establish THBS1 as a necessary mediator of diaphragm stromal remodeling and contractile dysfunction in overnutrition and a potential therapeutic target in obesity-associated respiratory dysfunction.

Authors

Eric D. Buras, Moon-Sook Woo, Romil Kaul Verma, Sri Harshita Kondisetti, Carol S. Davis, Dennis R. Claflin, Kimber Converso-Baran, Daniel E. Michele, Susan V. Brooks, Tae-Hwa Chun

×

Abstract

Beside suppressing immune responses, regulatory T cells (Tregs) maintain tissue homeostasis and control systemic metabolism. Whether iron is involved in Treg-mediated tolerance is completely unknown. Here, we showed that the transferrin receptor CD71 was upregulated on activated Tregs infiltrating human liver cancer. Mice with a Treg-restricted CD71 deficiency spontaneously developed a scurfy-like disease, caused by impaired perinatal Treg expansion. CD71-null Tregs displayed decreased proliferation and tissue-Treg signature loss. In perinatal life, CD71 deficiency in Tregs triggered hepatic iron overload response, characterized by increased hepcidin transcription and iron accumulation in macrophages. Lower bacterial diversity, and reduction of beneficial species, were detected in the fecal microbiota of CD71 conditional knock-out neonates. Our findings indicate that CD71-mediated iron absorption is required for Treg perinatal expansion and related to systemic iron homeostasis and bacterial gut colonization. Therefore, we hypothesize that Tregs establish nutritional tolerance through competition for iron during bacterial colonization after birth.

Authors

Ilenia Pacella, Alessandra Pinzon Grimaldos, Alessandra Rossi, Gloria Tucci, Marta Zagaglioni, Elena Potenza, Valeria Pinna, Ivano Rotella, Ilenia Cammarata, Valeria Cancila, Beatrice Belmonte, Claudio Tripodo, Giuseppe Pietropaolo, Chiara Di Censo, Giuseppe Sciumè, Valerio Licursi, Giovanna Peruzzi, Ylenia Antonucci, Silvia Campello, Francesca Guerrieri, Valerio Iebba, Rita Prota, Maria Di Chiara, Gianluca Terrin, Valerio De Peppo, Gian Luca Grazi, Vincenzo Barnaba, Silvia Piconese

×

Abstract

Rheumatoid arthritis (RA) management lean toward achieving remission or low-disease activity. In this study, we conducted single-cell RNA sequencing (scRNAseq) of peripheral blood mononuclear cells (PBMCs) from 36 individuals (18 RA patients and 18 matched controls, accounting for age, sex, race, and ethnicity), to identify disease-relevant cell subsets and cell type-specific signatures associated with disease activity. Our analysis revealed 18 distinct PBMC subsets, including an IFITM3 overexpressing Interferon-activated (IFN-activated) monocyte subset. We observed an increase in CD4+ T effector memory cells in patients with moderate to high disease activity (DAS28-CRP ≥ 3.2), and a decrease in non-classical monocytes in patients with low disease activity or remission (DAS28-CRP < 3.2). Pseudobulk analysis by cell type identified 168 differentially expressed genes between RA and matched controls, with a downregulation of pro-inflammatory genes in the gamma-delta T cells subset, alteration of genes associated with RA predisposition in the IFN-activated subset, and non-classical monocytes. Additionally, we identified a gene signature associated with moderate-high disease activity, characterized by upregulation of pro-inflammatory genes such as TNF, JUN, EGR1, IFIT2, MAFB, G0S2, and downregulation of genes including HLA-DQB1, HLA-DRB5, TNFSF13B. Notably, cell-cell communication analysis revealed an upregulation of signaling pathways, including VISTA, in both moderate-high and remission-low disease activity contexts. Our findings provide valuable insights into the systemic cellular and molecular mechanisms underlying RA disease activity.

Authors

Marie Binvignat, Brenda Y. Miao, Camilla Wibrand, Monica M. Yang, Dmitry Rychkov, Emily Flynn, Joanne Nititham, Whitney Tamaki, Umair Khan, Alexander Carvidi, Melissa Krueger, Erene C. Niemi, Yang Sun, Gabriela K. Fragiadakis, Jérémie Sellam, Encarnita Mariotti-Ferrandiz, David Klatzmann, Andrew J. Gross, Chun Jimmie Ye, Atul J. Butte, Lindsey A. Criswell, Mary C. Nakamura, Marina Sirota

×