Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

White matter dysfunction in psychiatric disorders is associated with neurotransmitter and genetic profiles

Abstract

Functional changes of white matter are largely unexplored in patients with psychiatric disorders. This study examined white matter dysfunctions common in four major psychiatric disorders (including schizophrenia, major depressive disorder, bipolar disorder and obsessive–compulsive disorder) using multimodal magnetic resonance imaging. Here we found increased brain activity in the bilateral anterior thalamic radiation in major psychiatric disorder patients when compared with healthy controls. The spatial pattern of white matter dysfunction in patients with major psychiatric disorders was correlated with the distributions of disease-related neurotransmitters and expression maps of specific genes. These genes were enriched in excitatory neurons and ontological terms related to synaptic function. These findings were replicated in an independent dataset. Collectively, imaging dysfunction of white matter and its molecular genetic basis provided new clues to understand the pathophysiology of major psychiatric disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of data generation and analysis.
Fig. 2: Dysfunctional WM tracts common to MPDs.
Fig. 3: Disorder-specific structural and functional WM changes in the discovery cohort.
Fig. 4: The WM dysfunction pattern in MPDs is associated with specific neurotransmitter profiles.
Fig. 5: Transcriptomic signatures of WM dysfunction in MPDs.
Fig. 6: Validation of WM dysfunction in MPDs.

Similar content being viewed by others

Data availability

Neurotransmitter receptor and transporter data can be obtained online at https://github.com/juryxy/JuSpace/tree/JuSpace_v1.5/JuSpace_v1.5/PETatlas. Human gene expression data that support the findings of this study are available in the Allen Brain Atlas (‘Complete normalized microarray datasets’, https://human.brain-map.org/static/download). A compiled cell-specific gene set list from all available large-scale single-cell studies of the adult human cortex can be obtained online at https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-020-17051-5/MediaObjects/41467_2020_170Pl51_MOESM8_ESM.xlsx. Data from the other datasets (cross-sectional datasets, SCZ, MDD, BD, OCD, HC data) are not publicly available for download, but access requests can be made to the respective study investigators: SCZ data—G.J. (jigongjun@163.com); MDD data—Y.T. (ayfytyh@126.com); BD data—L.Z. (cocozhangli@sohu.com); OCD data—C.Z. (ayswallow@126.com); HC data—K.W. (wangkai1964@126.com).

Code availability

Analyses are based on pipelines integrated within the software WhiteMatterSF toolbox (https://github.com/jigongjun/Neuroimaging-and-Neuromodulation/blob/main/WMfun/WhiteMatter.m).

References

  1. Vigo, D., Thornicroft, G. & Atun, R. Estimating the true global burden of mental illness. Lancet Psychiatry 3, 171–178 (2016).

    Article  PubMed  Google Scholar 

  2. Walker, E. R., McGee, R. E. & Druss, B. G. Mortality in mental disorders and global disease burden implications: a systematic review and meta-analysis. JAMA Psychiatry 72, 334–341 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Sexton, C. E., Mackay, C. E. & Ebmeier, K. P. A systematic review of diffusion tensor imaging studies in affective disorders. Biol. Psychiatry 66, 814–823 (2009).

    Article  PubMed  Google Scholar 

  4. Mahon, K., Burdick, K. E. & Szeszko, P. R. A role for white matter abnormalities in the pathophysiology of bipolar disorder. Neurosci. Biobehav. Rev. 34, 533–554 (2010).

    Article  PubMed  Google Scholar 

  5. Jenkins, L. M. et al. Shared white matter alterations across emotional disorders: a voxel-based meta-analysis of fractional anisotropy. NeuroImage Clin. 12, 1022–1034 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Cui, Y. et al. White matter microstructural differences across major depressive disorder, bipolar disorder and schizophrenia: a tract-based spatial statistics study. J. Affect. Disord. 260, 281–286 (2020).

    Article  PubMed  Google Scholar 

  7. Wang, Y. M. et al. Altered grey matter volume and white matter integrity in individuals with high schizo-obsessive traits, high schizotypal traits and obsessive–compulsive symptoms. Asian J. Psychiatry 52, 102096 (2020).

    Article  Google Scholar 

  8. Sarıçiçek, A. et al. Abnormal white matter integrity as a structural endophenotype for bipolar disorder. Psychol. Med. 46, 1547–1558 (2016).

    Article  PubMed  Google Scholar 

  9. Cole, J. et al. White matter abnormalities and illness severity in major depressive disorder. Br. J. Psychiatry 201, 33–39 (2012).

    Article  PubMed  Google Scholar 

  10. Fujino, J. et al. Impaired empathic abilities and reduced white matter integrity in schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry 48, 117–123 (2014).

    Article  PubMed  Google Scholar 

  11. Gawryluk, J. R., Mazerolle, E. L. & D’Arcy, R. C. Does functional MRI detect activation in white matter? A review of emerging evidence, issues, and future directions. Front. Neurosci. 8, 239 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ding, Z. et al. Spatio-temporal correlation tensors reveal functional structure in human brain. PLoS ONE 8, e82107 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Marussich, L., Lu, K. H., Wen, H. & Liu, Z. Mapping white-matter functional organization at rest and during naturalistic visual perception. NeuroImage 146, 1128–1141 (2017).

    Article  PubMed  Google Scholar 

  14. Peer, M., Nitzan, M., Bick, A. S., Levin, N. & Arzy, S. Evidence for functional networks within the human brain’s white matter. J. Neurosci. 37, 6394–6407 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Li, J. et al. A neuromarker of individual general fluid intelligence from the white-matter functional connectome. Transl. Psychiatry 10, 147 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Yang, H. et al. Amplitude of low frequency fluctuation within visual areas revealed by resting-state functional MRI. NeuroImage 36, 144–152 (2007).

    Article  PubMed  Google Scholar 

  17. Tomasi, D., Wang, G. J. & Volkow, N. D. Energetic cost of brain functional connectivity. Proc. Natl Acad. Sci. USA 110, 13642–13647 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ji, G.-J., Liao, W., Chen, F.-F., Zhang, L. & Wang, K. Low-frequency blood oxygen level-dependent fluctuations in the brain white matter: more than just noise. Sci. Bull. 62, 656–657 (2017).

    Article  Google Scholar 

  19. Wu, X. et al. Functional connectivity and activity of white matter in somatosensory pathways under tactile stimulations. NeuroImage 152, 371–380 (2017).

    Article  PubMed  Google Scholar 

  20. Gore, J. C. et al. Functional MRI and resting state connectivity in white matter—a mini-review. Magn. Reson. Imaging 63, 1–11 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Liu, N. et al. Altered functional synchrony between gray and white matter as a novel indicator of brain system dysconnectivity in schizophrenia. Psychol. Med. 52, 2540–2548 (2022).

  22. Lu, F. et al. Superficial white-matter functional networks changes in bipolar disorder patients during depressive episodes. J. Affect. Disord. 289, 151–159 (2021).

    Article  PubMed  Google Scholar 

  23. Li, J. et al. White-matter functional topology: a neuromarker for classification and prediction in unmedicated depression. Transl. Psychiatry 10, 365 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Jiang, Y. et al. White-matter functional networks changes in patients with schizophrenia. NeuroImage 190, 172–181 (2019).

    Article  PubMed  Google Scholar 

  25. Anttila, V. et al. Analysis of shared heritability in common disorders of the brain. Science 360, eaap8757 (2018).

  26. Goodkind, M. et al. Identification of a common neurobiological substrate for mental illness. JAMA Psychiatry 72, 305–315 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Sha, Z., Wager, T. D., Mechelli, A. & He, Y. Common dysfunction of large-scale neurocognitive networks across psychiatric disorders. Biol. Psychiatry 85, 379–388 (2019).

    Article  PubMed  Google Scholar 

  28. Crossley, N. A. et al. The hubs of the human connectome are generally implicated in the anatomy of brain disorders. Brain 137, 2382–2395 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Cao, M., Shu, N., Cao, Q., Wang, Y. & He, Y. Imaging functional and structural brain connectomics in attention-deficit/hyperactivity disorder. Mol. Neurobiol. 50, 1111–1123 (2014).

    Article  PubMed  Google Scholar 

  30. de Lange, S. C. et al. Shared vulnerability for connectome alterations across psychiatric and neurological brain disorders. Nat. Hum. Behav. 3, 988–998 (2019).

    Article  PubMed  Google Scholar 

  31. Zhou, J., Gennatas, E. D., Kramer, J. H., Miller, B. L. & Seeley, W. W. Predicting regional neurodegeneration from the healthy brain functional connectome. Neuron 73, 1216–1227 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Fox, M. D. Mapping symptoms to brain networks with the human connectome. N. Engl. J. Med. 379, 2237–2245 (2018).

    Article  PubMed  Google Scholar 

  33. Hansen, J. Y. et al. Local molecular and global connectomic contributions to cross-disorder cortical abnormalities. Nat. Commun. 13, 4682 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hawrylycz, M. J. et al. An anatomically comprehensive atlas of the adult human brain transcriptome. Nature 489, 391–399 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Arnatkeviciute, A., Fulcher, B. D. & Fornito, A. A practical guide to linking brain-wide gene expression and neuroimaging data. NeuroImage 189, 353–367 (2019).

    Article  PubMed  Google Scholar 

  36. Li, J. et al. Cortical structural differences in major depressive disorder correlate with cell type-specific transcriptional signatures. Nat. Commun. 12, 1647 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Anderson, K. M. et al. Convergent molecular, cellular, and cortical neuroimaging signatures of major depressive disorder. Proc. Natl Acad. Sci. USA 117, 25138–25149 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Romme, I. A., de Reus, M. A., Ophoff, R. A., Kahn, R. S. & van den Heuvel, M. P. Connectome disconnectivity and cortical gene expression in patients with schizophrenia. Biol. Psychiatry 81, 495–502 (2017).

    Article  PubMed  Google Scholar 

  39. Morgan, S. E. et al. Cortical patterning of abnormal morphometric similarity in psychosis is associated with brain expression of schizophrenia-related genes. Proc. Natl Acad. Sci. USA 116, 9604–9609 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Romero-Garcia, R. et al. Schizotypy-related magnetization of cortex in healthy adolescence is colocated with expression of schizophrenia-related genes. Biol. Psychiatry 88, 248–259 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Li, J. et al. Transcriptomic and macroscopic architectures of intersubject functional variability in human brain white-matter. Commun. Biol. 4, 1417 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hodgson, K. et al. Shared genetic factors influence head motion during MRI and body mass index. Cereb. Cortex 27, 5539–5546 (2017).

    PubMed  Google Scholar 

  43. Alakurtti, K. et al. Long-term test–retest reliability of striatal and extrastriatal dopamine D2/3 receptor binding: study with [11C]raclopride and high-resolution PET. J. Cereb. Blood Flow Metab. 35, 1199–1205 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Dukart, J. et al. Cerebral blood flow predicts differential neurotransmitter activity. Sci. Rep. 8, 4074 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Nørgaard, M. et al. A high-resolution in vivo atlas of the human brain’s benzodiazepine binding site of GABAA receptors. NeuroImage 232, 117878 (2021).

    Article  PubMed  Google Scholar 

  46. Hansen, J. Y. et al. Mapping neurotransmitter systems to the structural and functional organization of the human neocortex. Nat. Neurosci. 25, 1569–1581 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Zhou, Y. et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 10, 1523 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Ashburner, M. et al. Gene Ontology: tool for the unification of biology. Nat. Genet. 25, 25–29 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Kanehisa, M. & Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 28, 27–30 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Opel, N. et al. Cross-disorder analysis of brain structural abnormalities in six major psychiatric disorders: a secondary analysis of mega- and meta-analytical findings from the ENIGMA consortium. Biol. Psychiatry 88, 678–686 (2020).

    Article  PubMed  Google Scholar 

  51. Kessler, R. C., Chiu, W. T., Demler, O., Merikangas, K. R. & Walters, E. E. Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the National Comorbidity Survey Replication. Arch. Gen. Psychiatry 62, 617–627 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Kreilkamp, B. A. K. et al. Comparison of manual and automated fiber quantification tractography in patients with temporal lobe epilepsy. NeuroImage Clin. 24, 102024 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Deng, F. et al. Abnormal segments of right uncinate fasciculus and left anterior thalamic radiation in major and bipolar depression. Prog. Neuropsychopharmacol. Biol. Psychiatry 81, 340–349 (2018).

    Article  PubMed  Google Scholar 

  54. Sun, H. et al. Two patterns of white matter abnormalities in medication-naive patients with first-episode schizophrenia revealed by diffusion tensor imaging and cluster analysis. JAMA Psychiatry 72, 678–686 (2015).

    Article  PubMed  Google Scholar 

  55. Suo, X. et al. Psychoradiological abnormalities in treatment-naive noncomorbid patients with posttraumatic stress disorder. Depress. Anxiety 39, 83–91 (2022).

    Article  PubMed  Google Scholar 

  56. Andelman-Gur, M. M., Gazit, T., Strauss, I., Fried, I. & Fahoum, F. Stimulating the inferior fronto-occipital fasciculus elicits complex visual hallucinations. Brain Stimul. 13, 1577–1579 (2020).

    Article  PubMed  Google Scholar 

  57. Zhang, H. et al. Aberrant white matter microstructure in depressed patients with suicidality. J. Magn. Reson. Imaging 55, 1141–1150 (2022).

    Article  PubMed  Google Scholar 

  58. Surbeck, W. et al. Anatomical integrity within the inferior fronto-occipital fasciculus and semantic processing deficits in schizophrenia spectrum disorders. Schizophr. Res. 218, 267–275 (2020).

    Article  PubMed  Google Scholar 

  59. Ji, G. J. et al. Regional and network properties of white matter function in Parkinson’s disease. Hum. Brain Mapp. 40, 1253–1263 (2019).

    Article  PubMed  Google Scholar 

  60. Lin, H. et al. Combined functional and structural imaging of brain white matter reveals stage-dependent impairment in multiple system atrophy of cerebellar type. npj Parkinsons Dis. 8, 105 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Gao, Y. et al. Functional connectivity of white matter as a biomarker of cognitive decline in Alzheimer’s disease. PLoS ONE 15, e0240513 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Chen, X. et al. Extraction of dynamic functional connectivity from brain grey matter and white matter for MCI classification. Hum. Brain Mapp. 38, 5019–5034 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Chang, M. et al. Identifying and validating subtypes within major psychiatric disorders based on frontal–posterior functional imbalance via deep learning. Mol. Psychiatry 26, 2991–3002 (2021).

    Article  PubMed  Google Scholar 

  64. Satterthwaite, T. D. et al. Connectome-wide network analysis of youth with psychosis-spectrum symptoms. Mol. Psychiatry 20, 1508–1515 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Xia, M. et al. Shared and distinct functional architectures of brain networks across psychiatric disorders. Schizophr. Bull. 45, 450–463 (2019).

    Article  PubMed  Google Scholar 

  66. Siddiqi, S. H. et al. Distinct symptom-specific treatment targets for circuit-based neuromodulation. Am. J. Psychiatry 177, 435–446 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Wang, L. et al. Intermittent theta burst stimulation (iTBS) adjustment effects of schizophrenia: results from an exploratory outcome of a randomized double-blind controlled study. Schizophr. Res. 216, 550–553 (2020).

    Article  PubMed  Google Scholar 

  68. Li, N. et al. A unified connectomic target for deep brain stimulation in obsessive–compulsive disorder. Nat. Commun. 11, 3364 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Borroto-Escuela, D. O. et al. The role of central serotonin neurons and 5-HT heteroreceptor complexes in the pathophysiology of depression: a historical perspective and future prospects. Int. J. Mol. Sci. 22, 1927 (2021).

  70. Grace, A. A. Dysregulation of the dopamine system in the pathophysiology of schizophrenia and depression. Nat. Rev. Neurosci. 17, 524–532 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Yang, A. C. & Tsai, S. J. New targets for schizophrenia treatment beyond the dopamine hypothesis. Int. J. Mol. Sci. 18, 1689 (2017).

  72. Butt, A. M., Fern, R. F. & Matute, C. Neurotransmitter signaling in white matter. Glia 62, 1762–1779 (2014).

    Article  PubMed  Google Scholar 

  73. Fields, R. D., Dutta, D. J., Belgrad, J. & Robnett, M. Cholinergic signaling in myelination. Glia 65, 687–698 (2017).

    Article  PubMed  Google Scholar 

  74. Sekiguchi, H., Pavey, G. & Dean, B. Altered levels of dopamine transporter in the frontal pole and the striatum in mood disorders: a postmortem study. J. Affect. Disord. 320, 313–318 (2022).

    Article  PubMed  Google Scholar 

  75. Hamidianjahromi, A. & Tritos, N. A. Impulse control disorders in hyperprolactinemic patients on dopamine agonist therapy. Rev. Endocr. Metab. Disord. 23, 1089–1099 (2022).

    PubMed  Google Scholar 

  76. Weinstein, J. J. et al. Pathway-specific dopamine abnormalities in schizophrenia. Biol. Psychiatry 81, 31–42 (2017).

    Article  PubMed  Google Scholar 

  77. Higley, M. J. & Picciotto, M. R. Neuromodulation by acetylcholine: examples from schizophrenia and depression. Curr. Opin. Neurobiol. 29, 88–95 (2014).

    Article  PubMed  Google Scholar 

  78. Dulawa, S. C. & Janowsky, D. S. Cholinergic regulation of mood: from basic and clinical studies to emerging therapeutics. Mol. Psychiatry 24, 694–709 (2019).

    Article  PubMed  Google Scholar 

  79. Kochunov, P. et al. Acute nicotine administration effects on fractional anisotropy of cerebral white matter and associated attention performance. Front. Pharmacol. 4, 117 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Stahl, E. A. et al. Genome-wide association study identifies 30 loci associated with bipolar disorder. Nat. Genet. 51, 793–803 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Howard, D. M. et al. Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions. Nat. Neurosci. 22, 343–352 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Pardiñas, A. F. et al. Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong background selection. Nat. Genet. 50, 381–389 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Sedmak, G. & Judaš, M. White matter interstitial neurons in the adult human brain: 3% of cortical neurons in quest for recognition. Cells 10, 190 (2021).

  84. Connor, C. M., Guo, Y. & Akbarian, S. Cingulate white matter neurons in schizophrenia and bipolar disorder. Biol. Psychiatry 66, 486–493 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Yang, Y., Fung, S. J., Rothwell, A., Tianmei, S. & Weickert, C. S. Increased interstitial white matter neuron density in the dorsolateral prefrontal cortex of people with schizophrenia. Biol. Psychiatry 69, 63–70 (2011).

    Article  PubMed  Google Scholar 

  86. Eastwood, S. L. & Harrison, P. J. Interstitial white matter neurons express less reelin and are abnormally distributed in schizophrenia: towards an integration of molecular and morphologic aspects of the neurodevelopmental hypothesis. Mol. Psychiatry 8, 821–731 (2003).

    Article  Google Scholar 

  87. Alix, J. J. & Domingues, A. M. White matter synapses: form, function, and dysfunction. Neurology 76, 397–404 (2011).

    Article  PubMed  Google Scholar 

  88. Micu, I. et al. NMDA receptors mediate calcium accumulation in myelin during chemical ischaemia. Nature 439, 988–992 (2006).

    Article  PubMed  Google Scholar 

  89. Siddiqi, S. H., Kording, K. P., Parvizi, J. & Fox, M. D. Causal mapping of human brain function. Nat. Rev. Neurosci. 23, 361–375 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Taylor, J. J. et al. A transdiagnostic network for psychiatric illness derived from atrophy and lesions. Nat. Hum. Behav. 7, 420–429 (2023).

    Article  PubMed  Google Scholar 

  91. Boes, A. D. et al. Network localization of neurological symptoms from focal brain lesions. Brain 138, 3061–3075 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Yeh, F. C. Population-based tract-to-region connectome of the human brain and its hierarchical topology. Nat. Commun. 13, 4933 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Neurocognitive disorders. in Diagnostic and Statistical Manual of Mental Disorders 5th edn. 591–643 (American Psychiatric Association, 2013).

  94. Hamilton, M. A rating scale for depression. J. Neurol. Neurosurg. Psychiatry 23, 56–62 (1960).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Young, R. C., Biggs, J. T., Ziegler, V. E. & Meyer, D. A. A rating scale for mania: reliability, validity and sensitivity. Br. J. Psychiatry 133, 429–435 (1978).

    Article  PubMed  Google Scholar 

  96. Goodman, W. K. et al. The Yale–Brown Obsessive Compulsive Scale. I. Development, use, and reliability. Arch. Gen. Psychiatry 46, 1006–1011 (1989).

    Article  PubMed  Google Scholar 

  97. Quackenbush, J. Microarray data normalization and transformation. Nat. Genet. 32, 496–501 (2002).

    Article  PubMed  Google Scholar 

  98. Hawrylycz, M. et al. Canonical genetic signatures of the adult human brain. Nat. Neurosci. 18, 1832–1844 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Krishnan, A., Williams, L. J., McIntosh, A. R. & Abdi, H. Partial least squares (PLS) methods for neuroimaging: a tutorial and review. NeuroImage 56, 455–475 (2011).

    Article  PubMed  Google Scholar 

  100. Lam, M. et al. Comparative genetic architectures of schizophrenia in East Asian and European populations. Nat. Genet. 51, 1670–1678 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Li, Z. et al. Genome-wide association analysis identifies 30 new susceptibility loci for schizophrenia. Nat. Genet. 49, 1576–1583 (2017).

    Article  PubMed  Google Scholar 

  102. Li, H. J. et al. Novel risk loci associated with genetic risk for bipolar disorder among Han Chinese individuals: a genome-wide association study and meta-analysis. JAMA Psychiatry 78, 320–330 (2021).

    Article  PubMed  Google Scholar 

  103. Giannakopoulou, O. et al. The genetic architecture of depression in individuals of East Asian ancestry: a genome-wide association study. JAMA Psychiatry 78, 1258–1269 (2021).

    Article  PubMed  Google Scholar 

  104. Trubetskoy, V. et al. Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature 604, 502–508 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  105. International Obsessive Compulsive Disorder Foundation Genetics Collaborative (IOCDF-GC) & OCD Collaborative Genetics Association Studies (OCGAS). Revealing the complex genetic architecture of obsessive–compulsive disorder using meta-analysis. Mol. Psychiatry 23, 1181–1188 (2018).

  106. Mahjani, B., Bey, K., Boberg, J. & Burton, C. Genetics of obsessive–compulsive disorder. Psychol. Med. 51, 2247–2259 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Gormley, P. et al. Meta-analysis of 375,000 individuals identifies 38 susceptibility loci for migraine. Nat. Genet. 48, 856–866 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Wightman, D. P. et al. A genome-wide association study with 1,126,563 individuals identifies new risk loci for Alzheimer’s disease. Nat. Genet. 53, 1276–1282 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Nalls, M. A. et al. Identification of novel risk loci, causal insights, and heritable risk for Parkinson’s disease: a meta-analysis of genome-wide association studies. Lancet Neurol. 18, 1091–1102 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Zhang, Y. et al. Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and functional differences with mouse. Neuron 89, 37–53 (2016).

    Article  PubMed  Google Scholar 

  111. Lake, B. B. et al. Integrative single-cell analysis of transcriptional and epigenetic states in the human adult brain. Nat. Biotechnol. 36, 70–80 (2018).

    Article  PubMed  Google Scholar 

  112. Habib, N. et al. Massively parallel single-nucleus RNA-seq with DroNc-seq. Nat. Methods 14, 955–958 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Darmanis, S. et al. A survey of human brain transcriptome diversity at the single cell level. Proc. Natl Acad. Sci. USA 112, 7285–7290 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Seidlitz, J. et al. Transcriptomic and cellular decoding of regional brain vulnerability to neurogenetic disorders. Nat. Commun. 11, 3358 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the participants for taking part in this study and the Information Science Laboratory Center of USTC for the measurement services. We thank SciDraw, the open access image library, for allowing us to use their images when drafting our figure. Parts of Fig. 1 were drawn using Servier Medical Art, provided by Servier, licensed under a Creative Commons Attribution 3.0 unported license. This work was supported by the National Natural Science Foundation of China, grant/award numbers 81971689 (G.J.), 31970979 (K.W.), 82090034 (K.W.), 32271134 (C.Z.), 32071054 (Y.T.) and 82001429 (T.B.); the Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health of Anhui Province, grant/award number 2020xkjT05 (K.W.); the Scientific Research Fund of Anhui Medical University, grant/award numbers 2019xkj199 (K.H.) and 2021xkj236 (L.Z.); and the key project of applied medicine research in 2021 of Hefei Municipal Health Committee, grant/award number Hwk2021zd013 (K.H.).

Author information

Authors and Affiliations

Authors

Contributions

G.J. and J.S. designed the study, analyzed data and wrote the paper. Q.H., L.Z., T.Z., T.B., L.W. and F.Y. recruited the patients and collected clinical samples and neuroimaging data. X.W. and B.Q. assisted with imaging collection. A.W., W.L. and K.H. supervised processing and analyses of the neuroimaging data. H.S., C.Z. and Y.T. contributed to the paper. All authors evaluated the final paper. K.W. designed and supervised the study.

Corresponding author

Correspondence to Kai Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Mental Health thanks Shinichiro Luke Nakajima, Amanda Rodrigue and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–7, Tables 1–13, Methods and Results.

Reporting Summary

Supplementary Data

All the genes in the PLS analysis have been added in the Supplementary Gene Data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, GJ., Sun, J., Hua, Q. et al. White matter dysfunction in psychiatric disorders is associated with neurotransmitter and genetic profiles. Nat. Mental Health 1, 655–666 (2023). https://doi.org/10.1038/s44220-023-00111-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44220-023-00111-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing