Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A covalent molecular design enabling efficient CO2 reduction in strong acids

Abstract

Molecular complexes are an important class of catalysts for the electrochemical carbon dioxide reduction reaction (CO2RR). However, selective CO2RR in strong acids remains challenging due to competition with the hydrogen evolution reaction. Peripheral functionalization is effective for tailoring the intrinsic activity of molecular catalysts, mostly attributed to the inductive effect or to stabilization of reaction intermediates. Here we report that peripheral functionalization of immobilized molecular complexes with quaternary ammonium groups can regulate the catalytic activity by tuning the mass distribution surrounding the active sites, enabling high-performance CO2RR in strong acids. The positively charged and hydrophobic alkylammonium groups affect the migration of water and hydronium in the double layer, while their immobilized configuration enables a stable cationic layer, inhibiting the hydrogen evolution reaction over extended potential windows. Dodecyl ammonium-functionalized cobalt phthalocyanine and tin porphyrin suppress the hydrogen Faradaic efficiency to <10% in pH ~0.5 media, while providing a single-pass conversion efficiency up to ~85%. The selectivity can be maintained at 90% even in Li+ solutions, which often exhibit poor proton shielding. Our study underscores the role of second-sphere structure for selective molecular electrochemistry.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of electrochemical CO2RR in acidic electrolytes with various strategies.
Fig. 2: Synthesis and characterization of CoPc-derived electrocatalysts.
Fig. 3: Acidic electrochemical CO2RR performance of CoPc-derived electrocatalysts in flow cell.
Fig. 4: Mechanistic studies of interfaces by experiment and modelling.
Fig. 5: Performance of acidic CO2 reduction on extended electrocatalysts in a flow cell setup.

Similar content being viewed by others

Data availability

All other data supporting the finding of this study are available within this article and its Supplementary Information. Source data are provided with this paper.

References

  1. Chu, S., Cui, Y. & Liu, N. The path towards sustainable energy. Nat. Mater. 16, 16–22 (2017).

    Article  Google Scholar 

  2. Nitopi, S. et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 119, 7610–7672 (2019).

    Article  CAS  PubMed  Google Scholar 

  3. Song, Y. et al. Atomically thin, ionic-covalent organic nanosheets for stable, high-performance carbon dioxide electroreduction. Adv. Mater. 34, e2110496 (2022).

    Article  PubMed  Google Scholar 

  4. Guo, W. et al. Transient solid-state laser activation of indium for high-performance reduction of CO2 to formate. Small 18, e2201311 (2022).

    Article  PubMed  Google Scholar 

  5. Jiao, S., Fu, X., Wang, S. & Zhao, Y. Perfecting electrocatalysts via imperfections: towards the large-scale deployment of water electrolysis technology. Energy Environ. Sci. 14, 1722–1770 (2021).

    Article  CAS  Google Scholar 

  6. Su, J. et al. Building a stable cationic molecule/electrode interface for highly efficient and durable CO2 reduction at an industrially relevant current. Energy Environ. Sci. 14, 483–492 (2021).

    Article  CAS  Google Scholar 

  7. Gao, D., Arán-Ais, R. M., Jeon, H. S. & Roldan Cuenya, B. Rational catalyst and electrolyte design for CO2 electroreduction towards multicarbon products. Nat. Catal. 2, 198–210 (2019).

    Article  CAS  Google Scholar 

  8. Niu, Z.-Z., Chi, L.-P., Liu, R., Chen, Z. & Gao, M.-R. Rigorous assessment of CO2 electroreduction products in a flow cell. Energy Environ. Sci. 14, 4169–4176 (2021).

    Article  CAS  Google Scholar 

  9. Sa, Y. J. et al. Catalyst-electrolyte interface chemistry for electrochemical CO2 reduction. Chem. Soc. Rev. 49, 6632–6665 (2020).

    Article  CAS  PubMed  Google Scholar 

  10. Liu, S.-Q. et al. Bi2O3 nanosheets grown on carbon nanofiber with inherent hydrophobicity for high-performance CO2 electroreduction in a wide potential window. ACS Nano 15, 17757–17768 (2021).

    Article  CAS  PubMed  Google Scholar 

  11. O’Brien, C. P. et al. Single pass CO2 conversion exceeding 85% in the electrosynthesis of multicarbon products via local CO2 regeneration. ACS Energy Lett. 6, 2952–2959 (2021).

    Article  Google Scholar 

  12. Xu, Y. et al. Self-cleaning CO2 reduction systems: unsteady electrochemical forcing enables stability. ACS Energy Lett. 6, 809–815 (2021).

    Article  CAS  Google Scholar 

  13. Larrazábal, G. O. et al. Analysis of mass flows and membrane cross-over in CO2 reduction at high current densities in an MEA-type electrolyzer. ACS Appl. Mater. Interfaces 11, 41281–41288 (2019).

    Article  PubMed  Google Scholar 

  14. Rabinowitz, J. A. & Kanan, M. W. The future of low-temperature carbon dioxide electrolysis depends on solving one basic problem. Nat. Commun. 11, 5231 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Xie, K. et al. Eliminating the need for anodic gas separation in CO2 electroreduction systems via liquid-to-liquid anodic upgrading. Nat. Commun. 13, 3070 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gu, J. et al. Modulating electric field distribution by alkali cations for CO2 electroreduction in strongly acidic medium. Nat. Catal. 5, 268–276 (2022).

    Article  CAS  Google Scholar 

  17. Xia, W. et al. Adjacent copper single atoms promote C–C coupling in electrochemical CO2 reduction for the efficient conversion of ethanol. J. Am. Chem. Soc. 145, 17253–17264 (2023).

    Article  CAS  PubMed  Google Scholar 

  18. Oßkopp, M. et al. Producing formic acid at low pH values by electrochemical CO2 reduction. J. CO2 Util. 56, 101823 (2022).

    Article  Google Scholar 

  19. Qiao, Y. et al. Engineering the local microenvironment over Bi nanosheets for highly selective electrocatalytic conversion of CO2 to HCOOH in strong acid. ACS Catal. 12, 2357–2364 (2022).

    Article  CAS  Google Scholar 

  20. Xie, Y. et al. High carbon utilization in CO2 reduction to multi-carbon products in acidic media. Nat. Catal. 5, 564–570 (2022).

    Article  CAS  Google Scholar 

  21. Vennekoetter, J. B., Sengpiel, R. & Wessling, M. Beyond the catalyst: how electrode and reactor design determine the product spectrum during electrochemical CO2 reduction. Chem. Eng. J. 364, 89–101 (2019).

    Article  CAS  Google Scholar 

  22. Jiao, K. et al. Designing the next generation of proton-exchange membrane fuel cells. Nature 595, 361–369 (2021).

    Article  CAS  PubMed  Google Scholar 

  23. Varela, A. S. et al. pH Effects on the selectivity of the electrocatalytic CO2 reduction on graphene-embedded Fe–N–C motifs: bridging concepts between molecular homogeneous and solid-state heterogeneous catalysis. ACS Energy Lett. 3, 812–817 (2018).

    Article  CAS  Google Scholar 

  24. Ringe, S. et al. Double layer charging driven carbon dioxide adsorption limits the rate of electrochemical carbon dioxide reduction on Gold. Nat. Commun. 11, 33 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Monteiro, M. C. O., Philips, M. F., Schouten, K. J. P. & Koper, M. T. M. Efficiency and selectivity of CO2 reduction to CO on gold gas diffusion electrodes in acidic media. Nat. Commun. 12, 4943 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pan, B. et al. Close to 90% single-pass conversion efficiency for CO2 electroreduction in an acid-fed membrane electrode assembly. ACS Energy Lett. 7, 4224–4231 (2022).

    Article  CAS  Google Scholar 

  27. Li, Z. et al. Electron-rich Bi nanosheets promote CO2•− formation for high-performance and pH-universal electrocatalytic CO2 reduction. Angew. Chem. Int. Ed. 62, e202217569 (2023).

    Article  CAS  Google Scholar 

  28. Liu, Z. et al. Acidic electrocatalytic CO2 reduction using space-confined nanoreactors. ACS Appl. Mater. Interfaces 14, 7900–7908 (2022).

    Article  CAS  PubMed  Google Scholar 

  29. Huang, J. E. et al. CO2 electrolysis to multicarbon products in strong acid. Science 372, 1074–1078 (2021).

    Article  CAS  PubMed  Google Scholar 

  30. Zhong, Y. et al. An artificial electrode/electrolyte interface for CO2 electroreduction by cation surfactant self-assembly. Angew. Chem. Int. Ed. 59, 19095–19101 (2020).

    Article  CAS  Google Scholar 

  31. Wan, Q. et al. Boosting the faradaic efficiency for carbon dioxide to monoxide on a phthalocyanine cobalt based gas diffusion electrode to higher than 99% via microstructure regulation of catalyst layer. Electrochim. Acta 392, 139023 (2021).

    Article  CAS  Google Scholar 

  32. Fan, M. et al. Cationic-group-functionalized electrocatalysts enable stable acidic CO2 electrolysis. Nat. Catal. 6, 763–772 (2023).

    Article  CAS  Google Scholar 

  33. Weng, S., Toh, W. L. & Surendranath, Y. Weakly coordinating organic cations are intrinsically capable of supporting CO2 reduction catalysis. J. Am. Chem. Soc. 145, 16787–16795 (2023).

    Article  CAS  PubMed  Google Scholar 

  34. Nam, D. H. et al. Molecular enhancement of heterogeneous CO2 reduction. Nat. Mater. 19, 266–276 (2020).

    Article  CAS  PubMed  Google Scholar 

  35. Ren, S. et al. Molecular electrocatalysts can mediate fast, selective CO2 reduction in a flow cell. Science 365, 367–369 (2019).

    Article  CAS  PubMed  Google Scholar 

  36. Wu, Y., Jiang, Z., Lu, X., Liang, Y. & Wang, H. Domino electroreduction of CO2 to methanol on a molecular catalyst. Nature 575, 639–642 (2019).

    Article  CAS  PubMed  Google Scholar 

  37. Kusama, S., Saito, T., Hashiba, H., Sakai, A. & Yotsuhashi, S. Crystalline copper(II) phthalocyanine catalysts for electrochemical reduction of carbon dioxide in aqueous media. ACS Catal. 7, 8382–8385 (2017).

    Article  CAS  Google Scholar 

  38. Azcarate, I., Costentin, C., Robert, M. & Savéant, J.-M. Through-space charge interaction substituent effects in molecular catalysis leading to the design of the most efficient catalyst of CO2-to-CO electrochemical conversion. J. Am. Chem. Soc. 138, 16639–16644 (2016).

    Article  CAS  PubMed  Google Scholar 

  39. Nie, W., Tarnopol, D. E. & McCrory, C. C. L. Enhancing a molecular electrocatalyst’s activity for CO2 reduction by simultaneously modulating three substituent effects. J. Am. Chem. Soc. 143, 3764–3778 (2021).

    Article  CAS  PubMed  Google Scholar 

  40. Li, J. & Kornienko, N. Electrocatalytic carbon dioxide reduction in acid. Chem Catal. 2, 29–38 (2022).

    Article  CAS  Google Scholar 

  41. Ma, Z. et al. CO2 electroreduction to multicarbon products in strongly acidic electrolyte via synergistically modulating the local microenvironment. Nat. Commun. 13, 7596 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhao, Y. et al. Conversion of CO2 to multicarbon products in strong acid by controlling the catalyst microenvironment. Nat. Synth. 2, 403–412 (2023).

    Article  Google Scholar 

  43. Sheng, X., Ge, W., Jiang, H. & Li, C. Engineering the Ni–N–C catalyst microenvironment enabling CO2 electroreduction with nearly 100% CO selectivity in acid. Adv. Mater. 34, 2201295 (2022).

    Article  CAS  Google Scholar 

  44. Nie, W., Heim, G. P., Watkins, N. B., Agapie, T. & Peters, J. C. Organic additive-derived films on Cu electrodes promote electrochemical CO2 reduction to C2+ products under strongly acidic conditions. Angew. Chem. Int. Ed. 62, e202216102 (2023).

    Article  CAS  Google Scholar 

  45. Chen, J. et al. Facile synthesis of polymerized cobalt phthalocyanines for highly efficient CO2 reduction. Green Chem. 21, 6056–6061 (2019).

    Article  CAS  Google Scholar 

  46. Zhu, M. et al. Cobalt phthalocyanine coordinated to pyridine-functionalized carbon nanotubes with enhanced CO2 electroreduction. Appl. Catal. B 251, 112–118 (2019).

    Article  CAS  Google Scholar 

  47. Zhang, X. et al. Delocalized electron effect on single metal sites in ultrathin conjugated microporous polymer nanosheets for boosting CO2 cycloaddition. Sci. Adv. 6, eaaz4824 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bhuyan, M. M., Okabe, H., Hidaka, Y. & Hara, K. Pectin-[(3-acrylamidopropyl) trimethylammonium chloride-co-acrylic acid] hydrogel prepared by gamma radiation and selectively silver (Ag) metal adsorption. J. Appl. Polym. Sci. 135, 45906 (2018).

    Article  Google Scholar 

  49. Li, N., Lu, W., Pei, K. & Chen, W. Interfacial peroxidase-like catalytic activity of surface-immobilized cobalt phthalocyanine on multiwall carbon nanotubes. RSC Adv. 5, 9374–9380 (2015).

    Article  CAS  Google Scholar 

  50. Zhang, C. & Zhao, J. Effects of pre-corrosion on the corrosion inhibition performance of three inhibitors on Q235 Steel in CO2/H2S saturated brine solution. Int. J. Electrochem. Sci. 12, 9161–9179 (2017).

    Article  CAS  Google Scholar 

  51. Yang, S., Yu, Y., Dou, M., Zhang, Z. & Wang, F. Edge-functionalized polyphthalocyanine networks with high oxygen reduction reaction activity. J. Am. Chem. Soc. 142, 17524–17530 (2020).

    Article  CAS  PubMed  Google Scholar 

  52. Ge, W. et al. Dynamically formed surfactant assembly at the electrified electrode–electrolyte interface boosting CO2 electroreduction. J. Am. Chem. Soc. 144, 6613–6622 (2022).

    Article  CAS  PubMed  Google Scholar 

  53. Asasutjarit, R. et al. Development and evaluation of diclofenac sodium loaded-N-trimethyl chitosan nanoparticles for ophthalmic use. AAPS PharmSciTech 16, 1013–1024 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Han, N. et al. Supported cobalt polyphthalocyanine for high-performance electrocatalytic CO2 reduction. Chem 3, 652–664 (2017).

    Article  CAS  Google Scholar 

  55. Moreno-García, P. et al. Toward CO2 electroreduction under controlled mass flow conditions: a combined inverted RDE and gas chromatography approach. Anal. Chem. 92, 4301–4308 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Li, X. et al. Confinement of an alkaline environment for electrocatalytic CO2 reduction in acidic electrolytes. Chem. Sci. 14, 5602–5607 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Shen, J. et al. Electrocatalytic reduction of carbon dioxide to carbon monoxide and methane at an immobilized cobalt protoporphyrin. Nat. Commun. 6, 8177 (2015).

    Article  PubMed  Google Scholar 

  58. Jiang, Z. et al. Molecular catalyst with near 100% selectivity for CO2 reduction in acidic electrolytes. Adv. Energy Mater. 13, 2203603 (2023).

    Article  CAS  Google Scholar 

  59. Fujinuma, N., Ikoma, A. & Lofland, S. E. Highly efficient electrochemical CO2 reduction reaction to CO with one-pot synthesized Co-pyridine-derived catalyst incorporated in a nafion-based membrane electrode assembly. Adv. Energy Mater. 10, 2001645 (2020).

    Article  CAS  Google Scholar 

  60. Wang, Z., Hou, P., Wang, Y., Xiang, X. & Kang, P. Acidic electrochemical reduction of CO2 using nickel nitride on multiwalled carbon nanotube as selective catalyst. ACS Sustain. Chem. Eng. 7, 6106–6112 (2019).

    Article  CAS  Google Scholar 

  61. Fan, Q. et al. Iron nanoparticles tuned to catalyze CO2 electroreduction in acidic solutions through chemical microenvironment engineering. ACS Catal. 12, 7517–7523 (2022).

    Article  CAS  Google Scholar 

  62. Li, H. et al. Tailoring acidic microenvironments for carbon-efficient CO2 electrolysis over a Ni–N–C catalyst in a membrane electrode assembly electrolyzer. Energy Environ. Sci. 16, 1502–1510 (2023).

    Article  CAS  Google Scholar 

  63. Zhang, Q., Shao, X., Yi, J., Liu, Y. & Zhang, J. An experimental study of electroreduction of CO2 to HCOOH on SnO2/C in presence of alkali metal cations (Li+, Na+, K+, Rb+ and Cs+) and anions (HCO3, Cl, Br and I). Chin. J. Chem. Eng. 28, 2549–2554 (2020).

    Article  CAS  Google Scholar 

  64. Singh, M. R., Kwon, Y., Lum, Y., Ager, J. W. III & Bell, A. T. Hydrolysis of electrolyte cations enhances the electrochemical reduction of CO2 over Ag and Cu. J. Am. Chem. Soc. 138, 13006–13012 (2016).

    Article  CAS  PubMed  Google Scholar 

  65. Malkani, A. S. et al. Understanding the electric and nonelectric field components of the cation effect on the electrochemical CO reduction reaction. Sci. Adv. 6, eabd2569 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Murata, A. & Hori, Y. Product selectivity affected by cationic species in electrochemical reduction of CO2 and CO at a Cu electrode. Bull. Chem. Soc. Jpn 64, 123–127 (1991).

    Article  CAS  Google Scholar 

  67. Cao, Y. et al. Surface hydroxide promotes CO2 electrolysis to ethylene in acidic conditions. Nat. Commun. 14, 2387 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Shen, H. et al. Acidic CO2-to-HCOOH electrolysis with industrial-level current on phase engineered tin sulfide. Nat. Commun. 14, 2843 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Verma, S. et al. Insights into the low overpotential electroreduction of CO2 to CO on a supported gold catalyst in an alkaline flow electrolyzer. ACS Energy Lett. 3, 193–198 (2018).

    Article  CAS  Google Scholar 

  70. Hoang, T. T. H. et al. Nanoporous copper-silver alloys by additive-controlled electrodeposition for the selective electroreduction of CO2 to ethylene and ethanol. J. Am. Chem. Soc. 140, 5791–5797 (2018).

    Article  CAS  PubMed  Google Scholar 

  71. Ma, S. et al. One-step electrosynthesis of ethylene and ethanol from CO2 in an alkaline electrolyzer. J. Power Sources 301, 219–228 (2016).

    Article  CAS  Google Scholar 

  72. Yang, K. et al. Cation-driven increases of CO2 utilization in a bipolar membrane electrode assembly for CO2 electrolysis. ACS Energy Lett. 6, 4291–4298 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ring, L. et al. From bad electrochemical practices to an environmental and waste reducing approach for the generation of active hydrogen evolving electrodes. Angew. Chem. Int. Ed. 58, 17383–17392 (2019).

    Article  CAS  Google Scholar 

  74. Jerkiewicz, G. Applicability of platinum as a counter-electrode material in electrocatalysis research. ACS Catal. 12, 2661–2670 (2022).

    Article  CAS  Google Scholar 

  75. Watkins, N. B. et al. Hydrodynamics change Tafel slopes in electrochemical CO2 reduction on copper. ACS Energy Lett. 8, 2185–2192 (2023).

    Article  CAS  Google Scholar 

  76. Ohlin, C. A., Dyson, P. J. & Laurenczy, G. Carbon monoxide solubility in ionic liquids: determination, prediction and relevance to hydroformylation. Chem. Commun. 9, 1070–1071 (2004).

    Article  Google Scholar 

  77. Maurin, A. & Robert, M. Noncovalent immobilization of a molecular iron-based electrocatalyst on carbon electrodes for selective, efficient CO2-to-CO conversion in water. J. Am. Chem. Soc. 138, 2492–2495 (2016).

    Article  CAS  PubMed  Google Scholar 

  78. Torbensen, K. et al. Iron porphyrin allows fast and selective electrocatalytic conversion of CO2 to CO in a flow cell. Chem. Eur. J. 26, 3034–3038 (2020).

    Article  CAS  PubMed  Google Scholar 

  79. Weng, Z. et al. Active sites of copper-complex catalytic materials for electrochemical carbon dioxide reduction. Nat. Commun. 9, 415 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Rappe, A. K., Casewit, C. J., Colwell, K. S., Goddard, W. A. III & Skiff, W. M. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 114, 10024–10035 (1992).

    Article  CAS  Google Scholar 

  81. Rappe, A. K. & Goddard, W. A. III Charge equilibration for molecular dynamics simulations. J. Phys. Chem. 95, 3358–3363 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Guangdong Basic and Applied Basic Research Fund (2024A1515030164 and 2022A1515011333), the Hong Kong Research Grant Council (11309723), the State Key Laboratory of Marine Pollution (SKLMP/SCRF/0060) and the Shenzhen Science and Technology Program (JCYJ20220818101204009). B.Z.T. acknowledges support from Shenzhen Key Laboratory of Functional Aggregate Materials (ZDSYS20211021111400001), the Science Technology Innovation Commission of Shenzhen Municipality (KQTD20210811090142053 and JCYJ20220818103007014) and the Innovation and Technology Commission (ITC-CNERC14SC01). C.B.M. and W.A.G. acknowledge support from the Liquid Sunlight Alliance, which is supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Fuels from Sunlight Hub under award number DE-SC0021266.

Author information

Authors and Affiliations

Authors

Contributions

R.Y. conceptualized the project. R.Y., B.Z.T. and W.A.G. supervised the project. X.W. helped with experimental design. Q.Z. and J.S. developed and performed the catalyst synthesis. Q.Z. conducted most experiments and C.B.M. performed the calculations. Q.Z., J.S., Y.S., L.H., L.C., G.L., Y.L., Y.X., Q.H., G.Y. and H.S. carried out the materials characterization. R.Y., Q.Z., C.B.M. and W.A.G. analysed the data and wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Ben Zhong Tang, William A. Goddard III or Ruquan Ye.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Peng Kang, Shigeyuki Masaoka and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Alexandra Groves, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods, Figs. 1–32, Tables 1–5 and References 1–35.

Source data

Source Data Fig. 2

Statistical source data for Fig. 2.

Source Data Fig. 3

Statistical source data for Fig. 3.

Source Data Fig. 4

Statistical source data for Fig. 4.

Source Data Fig. 5

Statistical source data for Fig. 5.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Musgrave, C.B., Song, Y. et al. A covalent molecular design enabling efficient CO2 reduction in strong acids. Nat. Synth (2024). https://doi.org/10.1038/s44160-024-00588-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s44160-024-00588-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing