Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

Parallel experiments in electrochemical CO2 reduction enabled by standardized analytics

Abstract

Electrochemical CO2 reduction (eCO2R) is a promising strategy to transform detrimental CO2 emissions into sustainable fuels and chemicals. Key requirements for advancing this field are the development of analytical systems and of methods that are able to accurately and reproducibly assess the performance of catalysts, electrodes and electrolysers. Here we present a comprehensive analytical system for eCO2R based on commercial hardware, which captures data for >20 gas and liquid products with <5 min time resolution by chromatography, tracks gas flow rates, monitors electrolyser temperatures and flow pressures, and records electrolyser resistances and electrode surface areas. To complement the hardware, we develop an open-source software that automatically parses, aligns in time and post-processes the heterogeneous data, yielding quantities such as Faradaic efficiencies and corrected voltages. We showcase the system’s capabilities by performing measurements and data analysis on eight parallel electrolyser cells simultaneously.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematics of the comprehensive analytical system connected to a three-compartment electrochemical cell.
Fig. 2: GC and HPLC chromatograms of common eCO2R products.
Fig. 3: Data analysis plots automatically generated by our open-source software.
Fig. 4: Losses of volatile analytes from the catholyte analysed by GC and HPLC.
Fig. 5: Comprehensive dataset collected on a Cu GDE at 200 mA cm−2.
Fig. 6: Comprehensive analysis carried out on eight parallel electrolyser cells simultaneously.

Similar content being viewed by others

Data availability

Data used in this manuscript are freely available via Zenodo at https://doi.org/10.5281/zenodo.8319625 (ref. 54). Data for composing Fig. 3 are also part of an interactive example of automated data parsing and processing that can be accessed via Zenodo at https://doi.org/10.5281/zenodo.7941528 (ref. 32).

Code availability

The code used in this work is fully open source and available at https://dgbowl.github.io/ (ref. 33).

References

  1. Delbeke, J., Runge-Metzger, A., Slingenberg, Y. & Werksman, J. in Towards a Climate-Neutral Europe (eds Delbecke, J. & Vis, P.) Ch. 2 (Routledge, 2019).

  2. UNFCCC. 26th UN Climate Change Conference of the Parties 2021 - Glasgow Climate Pact (United Nations, 2022); https://unfccc.int/sites/default/files/resource/cma2021_10_add1_adv.pdf

  3. Chatterjee, T., Boutin, E. & Robert, M. Manifesto for the routine use of NMR for the liquid product analysis of aqueous CO2 reduction: from comprehensive chemical shift data to formaldehyde quantification in water. Dalton Trans. 49, 4257–4265 (2020).

    Article  CAS  PubMed  Google Scholar 

  4. Zhang, J., Luo, W. & Züttel, A. Crossover of liquid products from electrochemical CO2 reduction through gas diffusion electrode and anion exchange membrane. J. Catal. 385, 140–145 (2020).

    Article  CAS  Google Scholar 

  5. Lum, Y. & Ager, J. W. Evidence for product-specific active sites on oxide-derived Cu catalysts for electrochemical CO2 reduction. Nat. Catal. 2, 86–93 (2019).

    Article  CAS  Google Scholar 

  6. Dinh, C. T. et al. CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science 360, 783–787 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. Birdja, Y. Y. & Vaes, J. Towards a critical evaluation of electrocatalyst stability for CO2 electroreduction. ChemElectroChem 7, 4713–4717 (2020).

    Article  CAS  Google Scholar 

  8. Birdja, Y. Y. et al. Effects of substrate and polymer encapsulation on CO2 electroreduction by immobilized indium(III) protoporphyrin. ACS Catal. 8, 4420–4428 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Deng, W. et al. Crucial role of surface hydroxyls on the activity and stability in electrochemical CO2 reduction. J. Am. Chem. Soc. 141, 2911–2915 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Choi, Y. W., Scholten, F., Sinev, I. & Cuenya, B. R. Enhanced stability and CO/formate selectivity of plasma-treated SnOx/AgOx catalysts during CO2 electroreduction. J. Am. Chem. Soc. 141, 5261–5266 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kaneco, S. et al. Electrochemical conversion of carbon dioxide to methane in aqueous NaHCO3 solution at less than 273 K. Electrochim. Acta 48, 51–55 (2002).

    Article  CAS  Google Scholar 

  12. Varela, A. S. et al. CO2 electroreduction on well-defined bimetallic surfaces: Cu overlayers on Pt(111) and Pt(211). J. Phys. Chem. C 117, 20500–20508 (2013).

    Article  CAS  Google Scholar 

  13. Ju, W. et al. Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO2. Nat. Commun. 8, 9441 (2017).

    Article  Google Scholar 

  14. Li, A., Wang, H., Han, J. & Liu, L. Preparation of a Pb loaded gas diffusion electrode and its application to CO2 electroreduction. Front. Chem. Sci. Eng. 6, 381–388 (2012).

    Article  CAS  Google Scholar 

  15. Guzmán, H. et al. Investigation of gas diffusion electrode systems for the electrochemical CO2 conversion. Catalysts 11, 482 (2021).

    Article  Google Scholar 

  16. Kortlever, R., Peters, I., Koper, S. & Koper, M. T. M. Electrochemical CO2 reduction to formic acid at low overpotential and with high Faradaic efficiency on carbon-supported bimetallic Pd–Pt nanoparticles. ACS Catal. 5, 3916–3923 (2015).

    Article  CAS  Google Scholar 

  17. Blom, M. J. W., Smulders, V., van Swaaij, W. P. M., Kersten, S. R. A. & Mul, G. Pulsed electrochemical synthesis of formate using Pb electrodes. Appl. Catal. B Environ. 268, 118420 (2020).

    Article  CAS  Google Scholar 

  18. Larrazábal, G. O. et al. Analysis of mass flows and membrane cross-over in CO2 reduction at high current densities in an MEA-type electrolyzer. ACS Appl. Mater. Interfaces 11, 41281–41288 (2019).

    Article  PubMed  Google Scholar 

  19. Ma, M. et al. Insights into the carbon balance for CO2 electroreduction on Cu using gas diffusion electrode reactor designs. Energy Environ. Sci. 13, 977–985 (2020).

    Article  CAS  Google Scholar 

  20. Patra, K. K. et al. Boosting electrochemical CO2 reduction to methane via tuning oxygen vacancy concentration and surface termination on a copper/ceria catalyst. ACS Catal. 12, 10973–10983 (2022).

    Article  CAS  Google Scholar 

  21. An, X. et al. Electrodeposition of tin-based electrocatalysts with different surface tin species distributions for electrochemical reduction of CO2 to HCOOH. ACS Sustain. Chem. Eng. 7, 9360–9368 (2019).

    Article  CAS  Google Scholar 

  22. Bejtka, K. et al. Chainlike mesoporous SnO2 as a well-performing catalyst for electrochemical CO2 reduction. ACS Appl. Energy Mater. 2, 3081–3091 (2019).

    Article  CAS  Google Scholar 

  23. Khanipour, P. et al. Electrochemical real‐time mass spectrometry (EC‐RTMS): monitoring electrochemical reaction products in real time. Angew. Chem. Int. Edn Engl. 131, 7219–7219 (2019).

    Article  Google Scholar 

  24. Lobaccaro, P. et al. Initial application of selected-ion flow-tube mass spectrometry to real-time product detection in electrochemical CO2 reduction. Energy Technol. 6, 110–121 (2018).

    Article  CAS  Google Scholar 

  25. Clark, E. L., Singh, M. R., Kwon, Y. & Bell, A. T. Differential electrochemical mass spectrometer cell design for online quantification of products produced during electrochemical reduction of CO2. Anal. Chem. 87, 8013–8020 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. Wang, X. et al. Mechanistic reaction pathways of enhanced ethylene yields during electroreduction of CO2–CO co-feeds on Cu and Cu-tandem electrocatalysts. Nat. Nanotechnol. 14, 1063–1070 (2019).

    Article  CAS  PubMed  Google Scholar 

  27. Zhang, G., Cui, Y. & Kucernak, A. Real-time in situ monitoring of CO2 electroreduction in the liquid and gas phases by coupled mass spectrometry and localized electrochemistry. ACS Catal. 12, 6180–6190 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wilkinson, M. D. et al. The FAIR guiding principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Reinisch, D. et al. Various CO2-to-CO electrolyzer cell and operation mode designs to avoid CO2-crossover from cathode to anode. Z. Phys. Chem. 234, 1115–1131 (2019).

    Article  Google Scholar 

  30. Möller, T. et al. The product selectivity zones in gas diffusion electrodes during the electrocatalytic reduction of CO2. Energy Environ. Sci. 14, 5995–6006 (2021).

    Article  Google Scholar 

  31. Kwon, Y. & Koper, M. T. M. Combining voltammetry with HPLC: application to electro-oxidation of glycerol. Anal. Chem. 82, 5420–5424 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Senocrate, A., Bernasconi, F., Kraus, P., Sauter, U. & Battaglia, C. Instructions and tutorial for publication 'Parallel experiments in electrochemical CO2 reduction enabled by standardized analytics'. Zenodo https://doi.org/10.5281/zenodo.7941528 (2024).

  33. dgbowl Development Team. dgbowl: tools for digital (electro-)catalysis and battery materials research. GitHub https://dgbowl.github.io/ (2024).

  34. Kraus, P. & Vetsch, N. yadg: yet another datagram (4.2.3). Zenodo https://doi.org/10.5281/zenodo.7898175 (2023).

  35. Kraus, P. & Sauter, U. dgpost: datagram post-processing toolkit (2.1) https://doi.org/10.5281/zenodo.7898183 (2023).

  36. Kraus, P. et al. Towards automation of operando experiments: a case study in contactless conductivity measurements. Digit. Discov. 1, 241–254 (2022).

    Article  Google Scholar 

  37. Kraus, P., Vetsch, N. & Battaglia, C. yadg: yet another datagram. J. Open Source Softw. 7, 4166 (2022).

    Article  Google Scholar 

  38. The pandas development team. pandas-dev/pandas: Pandas (v1.5.3). Zenodo https://doi.org/10.5281/zenodo.7549438 (2023).

  39. Grecco, H. E. & Chéron, J. Pint: Makes Units Easy. GitHub https://github.com/hgrecco/pint (2021).

  40. Lebigot, E. O. Python Uncertainties Package. GitHub https://github.com/lmfit/uncertainties (2022).

  41. dgpost Authors. dgpost: datagram post-processing toolkit—project documentation. GitHub https://dgbowl.github.io/dgpost/master/index.html (2023).

  42. Seger, B., Robert, M. & Jiao, F. Best practices for electrochemical reduction of carbon dioxide. Nat. Sustain. 6, 236–238 (2023).

    Article  Google Scholar 

  43. Ma, M., Zheng, Z., Yan, W., Hu, C. & Seger, B. Rigorous evaluation of liquid products in high-rate CO2/CO electrolysis. ACS Energy Lett. 7, 2595–2601 (2022).

    Article  CAS  Google Scholar 

  44. Kong, Y. et al. Cracks as efficient tools to mitigate flooding in gas diffusion electrodes used for the electrochemical reduction of carbon dioxide. Small Methods 6, 2200369 (2022).

    Article  CAS  Google Scholar 

  45. Wu, Y. et al. Mitigating electrolyte flooding for electrochemical CO2 reduction via infiltration of hydrophobic particles in a gas diffusion layer. ACS Energy Lett. 7, 2884–2892 (2022).

    Article  CAS  Google Scholar 

  46. Rabinowitz, J. A. & Kanan, M. W. The future of low-temperature carbon dioxide electrolysis depends on solving one basic problem. Nat. Commun. 11, 5231 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ma, M. et al. Local reaction environment for selective electroreduction of carbon monoxide. Energy Environ. Sci. 15, 2470–2478 (2022).

    Article  CAS  Google Scholar 

  48. Friedmann, T. A., Siegal, M. P., Tallant, D. R., Simpson, R. L. & Dominguez, F. Residual stress and Raman spectra of laser deposited highly tetrahedral-coordinated amorphous carbon films. MRS Proc. 349, 501–506 (1994).

    Article  CAS  Google Scholar 

  49. Wheeler, D. G. et al. Quantification of water transport in a CO2 electrolyzer. Energy Environ. Sci. 13, 5126–5134 (2020).

    Article  CAS  Google Scholar 

  50. DeWulf, D. W., Jin, T. & Bard, A. J. Electrochemical and surface studies of carbon dioxide reduction to methane and ethylene at copper electrodes in aqueous solutions. J. Electrochem. Soc. 136, 1686–1691 (1989).

    Article  CAS  Google Scholar 

  51. Wuttig, A. & Surendranath, Y. Impurity ion complexation enhances carbon dioxide reduction catalysis. ACS Catal. 5, 4479–4484 (2015).

    Article  CAS  Google Scholar 

  52. Senocrate, A. et al. Importance of substrate pore size and wetting behavior in gas diffusion electrodes for CO2 reduction. ACS Appl. Energy Mater. 5, 14504–14512 (2022).

    Article  CAS  Google Scholar 

  53. Bernasconi, F., Senocrate, A., Kraus, P. & Battaglia, C. Enhancing C≥2 product selectivity in electrochemical CO2 reduction by controlling the microstructure of gas diffusion electrodes. EES Catal. 1, 1009–1016 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Senocrate, A. et al. Dataset for publication 'Parallel experiments in electrochemical CO2 reduction enabled by standardized analytics'. Zenodo https://doi.org/10.5281/zenodo.8319624 (2023).

Download references

Acknowledgements

This work has received funding from the ETH Board in the framework of the Joint Strategic Initiative ‘Synthetic Fuels from Renewable Resources’. This work was also supported by the NCCR Catalysis, a National Centre of Competence in Research funded by the Swiss National Science Foundation (grant no. 180544). We further acknowledge support by the Open Research Data Program of the ETH Board (project ‘PREMISE’: Open and Reproducible Materials Science Research). A.S. acknowledges funding from the Swiss National Science Foundation through the Ambizione grant PZ00P2_215992. We thank C. Spitz, S. Holmann and M. Maier from Agilent Technologies (Switzerland) for support with validating the chromatographic method. We thank N. Vetsch for help in coding the electrochemical data parser, and J. Viloria for support during electrochemical experiments. E. Querel is acknowledged for help with the ICP measurements. We also acknowledge the support of the Scientific Center for Optical and Electron Microscopy (ScopeM) of the ETH Zurich and of P. Zeng of ScopeM for the focused ion beam-SEM results. We also thank M. Mirolo of beamline ID31 at the European Synchrotron Radiation Facility (ESRF) for support with the synchrotron X-ray measurements.

Author information

Authors and Affiliations

Authors

Contributions

A.S. designed, validated and assembled the hardware, performed the main electrochemical experiments and wrote the manuscript with input from all co-authors. F.B. contributed to the electrochemical experiments, validation of the method, assembly of the hardware and acquisition of the SEM images. P.K. wrote the open-source software and contributed to the data analysis. N.P. supported the data analysis effort and wrote the script required to analyse data from parallel cells. J.T., F.T. and T.W. supported the implementation of the online liquid sampling and liquid analysis. U.S. helped writing and debugging the open-source software. C.B. supervised the development of the project.

Corresponding author

Correspondence to Alessandro Senocrate.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Joel Ager III, Zhihao Cui and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–10, Figs. 1–21 and Tables 1–11.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senocrate, A., Bernasconi, F., Kraus, P. et al. Parallel experiments in electrochemical CO2 reduction enabled by standardized analytics. Nat Catal 7, 742–752 (2024). https://doi.org/10.1038/s41929-024-01172-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-024-01172-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing