Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol Extension
  • Published:

Observing isolated synaptic vesicle association and fusion ex vivo

Abstract

Here, we present a protocol for isolating functionally intact glutamatergic synaptic vesicles from whole-mouse brain tissue and using them in a single-vesicle assay to examine their association and fusion with plasma membrane mimic vesicles. This is a Protocol Extension, building on our previous protocol, which used a purely synthetic system comprised of reconstituted proteins in liposomes. We also describe the generation of a peptide based on the vesicular glutamate transporter, which is essential in the isolation process of glutamatergic synaptic vesicles. This method uses easily accessible reagents to generate fusion-competent glutamatergic synaptic vesicles through immunoisolation. The generation of the vGlut peptide can be accomplished in 6 d, while the isolation of the synaptic vesicles by using the peptide can be accomplished in 2 d, with an additional day to fluorescently label the synaptic vesicles for use in a single-vesicle hybrid fusion assay. The single-vesicle fusion assay can be accomplished in 1 d and can unambiguously delineate synaptic vesicle association, dissociation, Ca2+-independent and Ca2+-dependent fusion modalities. This assay grants control of the synaptic vesicle environment while retaining the complexity of the synaptic vesicles themselves. This protocol can be adapted to studies of other types of synaptic vesicles or, more generally, different secretory or transport vesicles. The workflow described here requires expertise in biochemistry techniques, in particular, protein purification and fluorescence imaging. We assume that the laboratory has protein-purification equipment, including chromatography systems.

Key points

  • This protocol describes an immunoisolation-based approach for isolating functionally intact glutamatergic synaptic vesicles from whole-mouse brain tissue and their use in a single-vesicle assay to examine their association and fusion with plasma membrane mimic vesicles.

  • Isolated vesicles are amenable to a range of functional studies. In addition to the fusion assay described in this protocol, the vesicles can be used for cryo-electron microscopy and cryo-electron tomography.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Slide preparation.
Fig. 2: Example SEC chromatogram of a vGlut peptide preparation.
Fig. 3: Isolation scheme of ISVs and example verification by electron microscopy.
Fig. 4: Example western blot analysis of the isolation probed with antibodies against vGlut, vGAT and synaptophysin.
Fig. 5: Example of ISV association with PM vesicles that mimic the plasma membrane.

Similar content being viewed by others

Data availability

All imaging data and post-processed files are available in the Stanford Digital Repository at https://doi.org/10.25740/wc823yz5804.

Code availability

MATLAB analysis scripts for the single-vesicle fusion experiments are available on GitHub (https://github.com/brungerlab/single_molecule_matlab_scripts)31. The smCamera software (Taekjip Ha’s laboratory, Johns Hopkins University, Baltimore, MD) was used for acquisition and is available at https://github.com/Ha-SingleMoleculeLab (ref. 32).

References

  1. Rothman, J. E. The principle of membrane fusion in the cell (Nobel lecture). Angew. Chem. Int. Ed. Engl. 53, 12676–12694 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Südhof, T. C. Neurotransmitter release: the last millisecond in the life of a synaptic vesicle. Neuron 80, 675–690 (2013).

    Article  PubMed  Google Scholar 

  3. Kyoung, M. et al. In vitro system capable of differentiating fast Ca2+-triggered content mixing from lipid exchange for mechanistic studies of neurotransmitter release. Proc. Natl Acad. Sci. USA 108, E304–E313 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ma, C., Li, W., Xu, Y. & Rizo, J. Munc13 mediates the transition from the closed syntaxin-Munc18 complex to the SNARE complex. Nat. Struct. Mol. Biol. 18, 542–549 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yang, X. et al. Syntaxin opening by the MUN domain underlies the function of Munc13 in synaptic-vesicle priming. Nat. Struct. Mol. Biol. 22, 547–554 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lai, Y. et al. Molecular mechanisms of synaptic vesicle priming by Munc13 and Munc18. Neuron 95, 591–607.e10 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang, S. et al. Munc18 and Munc13 serve as a functional template to orchestrate neuronal SNARE complex assembly. Nat. Commun. 10, 69 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Quade, B. et al. Membrane bridging by Munc13-1 is crucial for neurotransmitter release. eLife 8, e42806 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Choi, U. B., Zhao, M., Zhang, Y., Lai, Y. & Brunger, A. T. Complexin induces a conformational change at the membrane-proximal C-terminal end of the SNARE complex. eLife 5, e16886 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Gong, J. et al. C-terminal domain of mammalian complexin-1 localizes to highly curved membranes. Proc. Natl Acad. Sci. USA 113, E7590–E7599 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lai, Y. et al. N-terminal domain of complexin independently activates calcium-triggered fusion. Proc. Natl Acad. Sci. USA 113, E4698–E4707 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Diao, J. et al. Synaptic proteins promote calcium-triggered fast transition from point contact to full fusion. eLife 1, e00109 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kiessling, V. et al. Rapid fusion of synaptic vesicles with reconstituted target SNARE membranes. Biophys. J. 104, 1950–1958 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kreutzberger, A. J. B. et al. In vitro fusion of single synaptic and dense core vesicles reproduces key physiological properties. Nat. Commun. 10, 3904 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Gipson, P. et al. Morphologies of synaptic protein membrane fusion interfaces. Proc. Natl Acad. Sci. USA 114, 9110–9115 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Imig, C. et al. The morphological and molecular nature of synaptic vesicle priming at presynaptic active zones. Neuron 84, 416–431 (2014).

    Article  CAS  PubMed  Google Scholar 

  17. Peters, J. J. et al. A feature-guided, focused 3D signal permutation method for subtomogram averaging. J. Struct. Biol. 214, 107851 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Witkowska, A., Spindler, S., Mahmoodabadi, R. G., Sandoghdar, V. & Jahn, R. Differential diffusional properties in loose and tight docking prior to membrane fusion. Biophys. J. 119, 2431–2439 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Witkowska, A., Heinz, L. P., Grubmüller, H. & Jahn, R. Tight docking of membranes before fusion represents a metastable state with unique properties. Nat. Commun. 12, 2–8 (2021).

    Article  Google Scholar 

  20. Grønborg, M. et al. Quantitative comparison of glutamatergic and GABAergic synaptic vesicles unveils selectivity for few proteins including MAL2, a novel synaptic vesicle protein. J. Neurosci. 30, 2–12 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Takamori, S. et al. Molecular anatomy of a trafficking organelle. Cell 127, 831–846 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Leitz, J. et al. Beyond the MUN domain, Munc13 controls priming and depriming of synaptic vesicles. Cell Rep. 43, 114026 (2024).

    Article  CAS  PubMed  Google Scholar 

  23. Kyoung, M., Zhang, Y., Diao, J., Chu, S. & Brunger, A. T. Studying calcium-triggered vesicle fusion in a single vesicle-vesicle content and lipid-mixing system. Nat. Protoc. 8, 1–16 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Lai, Y. et al. Complexin inhibits spontaneous release and synchronizes Ca2+-triggered synaptic vesicle fusion by distinct mechanisms. eLife 3, e03756 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Brunger, A. T. & Leitz, J. The core complex of the Ca2+-triggered presynaptic fusion machinery. J. Mol. Biol. 435, 167853 (2023).

    Article  CAS  PubMed  Google Scholar 

  26. Wang, C. et al. Structure and topography of the synaptic V-ATPase–synaptophysin complex. Nature https://doi.org/10.1038/s41586-024-07610-x (2024).

  27. Farsi, Z. et al. Single-vesicle imaging reveals different transport mechanisms between glutamatergic and GABAergic vesicles. Science 351, 981–984 (2016).

    Article  CAS  PubMed  Google Scholar 

  28. Bradberry, M. M. et al. Molecular basis for synaptotagmin-1-associated neurodevelopmental disorder. Neuron 107, 1–13 (2020).

    Article  Google Scholar 

  29. Peters, J. J., Leitz, J., Oses-Prieto, J. A., Burlingame, A. L. & Brunger, A. T. Molecular characterization of AMPA-receptor-containing vesicles. Front. Mol. Neurosci. 14, 754631 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ahmed, S., Holt, M., Riedel, D. & Jahn, R. Small-scale isolation of synaptic vesicles from mammalian brain. Nat. Protoc. 8, 998–1009 (2013).

    Article  PubMed  Google Scholar 

  31. single_molecule_matlab_scripts GitHub https://github.com/brungerlab/single_molecule_matlab_scripts (2022).

  32. Ha-SingleMoleculeLab GitHub https://github.com/Ha-SingleMoleculeLab (2021).

Download references

Acknowledgements

We thank R. Jahn and Z. Farsi for stimulating discussions and introducing us to synaptic vesicle isolation techniques. This research was supported by the National Institutes of Health (RO1MH63105 to A.T.B.) and by a grant from the Stanford ADRC Zaffaroni Alzheimer’s Disease Translational Research Program to A.T.B. (ADRC grant no. 5P50AG047366-02).

Author information

Authors and Affiliations

Authors

Contributions

J.L. performed the experiments and designed the hybrid fusion assay with input from A.T.B. J.L. and R.A.P. designed the vGlut peptide. J.L. and J.J.P. developed the custom Matlab software to analyze the fusion assay data. J.L., J.J.P. and C.W. generated LP2. A.L.W., L.E. and C.W. optimized the purification protocol for the vGlut peptide. L.E., A.L.W. and R.A.P. produced the proteins used in the hybrid fusion assay. N.G., C.W. and J.L. performed western blots. J.L., L.E. and A.T.B. wrote the paper.

Corresponding author

Correspondence to Axel T. Brunger.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Pietro De Camilli, Shyam Krishnakumar, Tae-Young Yoon and the other, anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Related links

Key references using this protocol

Wang, C. et al. Nature (2024): https://doi.org/10.1038/s41586-024-07610-x

Leitz, J. et al. Cell Rep. 43, 114026 (2024): https://doi.org/10.1016/j.celrep.2024.114026

Brunger, A. T. & Leitz, J. J. Mol. Biol. 435, 167853 (2023): https://doi.org/10.1016/j.jmb.2022.167853

Peters, J. J. et al. J. Struct. Biol. 214, 107851 (2022): https://doi.org/10.1016/j.jsb.2022.107851

This protocol is an extension to: Nat. Protoc. 8, 1–16 (2013): https://doi.org/10.1038/nprot.2012.134

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leitz, J., Wang, C., Esquivies, L. et al. Observing isolated synaptic vesicle association and fusion ex vivo. Nat Protoc (2024). https://doi.org/10.1038/s41596-024-01014-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41596-024-01014-x

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing