Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Experimental observation of repulsively bound magnons

Abstract

Stable composite objects, such as hadrons, nuclei, atoms, molecules and superconducting pairs, formed by attractive forces are ubiquitous in nature. By contrast, composite objects stabilized by means of repulsive forces were long thought to be theoretical constructions owing to their fragility in naturally occurring systems. Surprisingly, the formation of bound atom pairs by strong repulsive interactions has been demonstrated experimentally in optical lattices1. Despite this success, repulsively bound particle pairs were believed to have no analogue in condensed matter owing to strong decay channels. Here we present spectroscopic signatures of repulsively bound three-magnon states and bound magnon pairs in the Ising-like chain antiferromagnet BaCo2V2O8. In large transverse fields, below the quantum critical point, we identify repulsively bound magnon states by comparing terahertz spectroscopy measurements to theoretical results for the Heisenberg–Ising chain antiferromagnet, a paradigmatic quantum many-body model2,3,4,5. Our experimental results show that these high-energy, repulsively bound magnon states are well separated from continua, exhibit notable dynamical responses and, despite dissipation, are sufficiently long-lived to be identified. As the transport properties in spin chains can be altered by magnon bound states, we envision that such states could serve as resources for magnonics-based quantum information processing technologies6,7,8.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Repulsively bound two and three magnons for a Heisenberg–Ising antiferromagnetic chain in a strong transverse field.
Fig. 2: Quantum spin dynamics around the one-dimensional transverse-field Ising quantum critical point.
Fig. 3: New types of high-energy excitation in the regime 0 B < Bc.
Fig. 4: Characteristic quantum spin dynamics.

Similar content being viewed by others

Data availability

All data needed to evaluate the conclusions in the paper are included in this paper. Further data that support the plots and other analysis in this work are available from the corresponding author on request. The theoretical simulations data are available at https://doi.org/10.5281/zenodo.11521387 (ref. 44).

References

  1. Winkler, K. et al. Repulsively bound atom pairs in an optical lattice. Nature 441, 853–856 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Pfeuty, P. The one-dimensional Ising model with a transverse field. Ann. Phys. 57, 79–90 (1970).

    Article  ADS  CAS  Google Scholar 

  3. Sachdev, S. Quantum Phase Transitions (Cambridge Univ. Press, 2011).

  4. Dutta, A. et al. Quantum Phase Transitions in Transverse Field Spin Models: From Statistical Physics to Quantum Information (Cambridge Univ. Press, 2015).

  5. Mussardo, G. Statistical Field Theory: An Introduction to Exactly Solved Models in Statistical Physics (Oxford Univ. Press, 2020).

  6. Subrahmanyam, V. Entanglement dynamics and quantum-state transport in spin chains. Phys. Rev. A 69, 034304 (2004).

    Article  ADS  Google Scholar 

  7. Barman, A. et al. The 2021 magnonics roadmap. J. Phys. Condens. Matter 33, 413001 (2021).

    Article  CAS  Google Scholar 

  8. Yuan, H., Cao, Y., Kamra, A., Duine, R. A. & Yan, P. Quantum magnonics: when magnon spintronics meets quantum information science. Phys. Rep. 965, 1–74 (2022).

    Article  ADS  MathSciNet  Google Scholar 

  9. Bethe, H. Zur Theorie der Metalle. I. Eigenwerte und Eigenfunktionen der linearen Atomkette. Z. Phys. 71, 205–226 (1931).

    Article  ADS  CAS  Google Scholar 

  10. Wortis, M. Bound states of two spin waves in the Heisenberg ferromagnet. Phys. Rev. 132, 85–97 (1963).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  11. Hanus, J. Bound states in the Heisenberg ferromagnet. Phys. Rev. Lett. 11, 336–338 (1963).

    Article  ADS  MathSciNet  Google Scholar 

  12. Deuchert, A., Sakmann, K., Streltsov, A. I., Alon, O. E. & Cederbaum, L. S. Dynamics and symmetries of a repulsively bound atom pair in an infinite optical lattice. Phys. Rev. A 86, 013618 (2012).

    Article  ADS  Google Scholar 

  13. Kimura, S. et al. Collapse of magnetic order of the quasi one-dimensional Ising-like antiferromagnet BaCo2V2O8 in transverse fields. J. Phys. Soc. Jpn 82, 033706 (2013).

    Article  ADS  Google Scholar 

  14. Niesen, S. K. et al. Magnetic phase diagrams, domain switching, and quantum phase transition of the quasi-one-dimensional Ising-like antiferromagnet BaCo2V2O8. Phys. Rev. B 87, 224413 (2013).

    Article  ADS  Google Scholar 

  15. Wang, Z. et al. Quantum criticality of an Ising-like spin-1/2 antiferromagnetic chain in a transverse magnetic field. Phys. Rev. Lett. 120, 207205 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Faure, Q. et al. Topological quantum phase transition in the Ising-like antiferromagnetic spin chain BaCo2V2O8. Nat. Phys. 14, 716–722 (2018).

    Article  CAS  Google Scholar 

  17. Takayoshi, S., Furuya, S. C. & Giamarchi, T. Topological transition between competing orders in quantum spin chains. Phys. Rev. B 98, 184429 (2018).

    Article  ADS  CAS  Google Scholar 

  18. Calabrese, P., Essler, F. H. L. & Fagotti, M. Quantum quench in the transverse-field Ising chain. Phys. Rev. Lett. 106, 227203 (2011).

    Article  ADS  PubMed  Google Scholar 

  19. Caux, J.-S. The quench action. J. Stat. Mech. Theory Exp. 2016, 064006 (2016).

    Article  MathSciNet  Google Scholar 

  20. James, A. J. A., Konik, R. M. & Robinson, N. J. Nonthermal states arising from confinement in one and two dimensions. Phys. Rev. Lett. 122, 130603 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Tan, W. L. et al. Domain-wall confinement and dynamics in a quantum simulator. Nat. Phys. 17, 742–747 (2021).

    Article  CAS  Google Scholar 

  22. Shiba, H., Ueda, Y., Okunishi, K., Kimura, S. & Kindo, K. Exchange interaction via crystal-field excited states and its importance in CsCoCl3. J. Phys. Soc. Jpn 72, 2326–2333 (2003).

    Article  ADS  CAS  Google Scholar 

  23. Niesen, S. K. et al. Substitution effects on the temperature versus magnetic field phase diagrams of the quasi-one-dimensional effective Ising spin-\(\frac{1}{2}\) chain system BaCo2V2O8. Phys. Rev. B 90, 104419 (2014).

    Article  ADS  Google Scholar 

  24. Faddeev, L. & Takhtajan, L. What is the spin of a spin wave? Phys. Lett. A 85, 375–377 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  25. Tennant, D. A., Perring, T. G., Cowley, R. A. & Nagler, S. E. Unbound spinons in the S=1/2 antiferromagnetic chain KCuF3. Phys. Rev. Lett. 70, 4003–4006 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Stone, M. B. et al. Extended quantum critical phase in a magnetized spin-\(\frac{1}{2}\) antiferromagnetic chain. Phys. Rev. Lett. 91, 037205 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Mourigal, M. et al. Fractional spinon excitations in the quantum Heisenberg antiferromagnetic chain. Nat. Phys. 9, 435–441 (2013).

    Article  CAS  Google Scholar 

  28. Wu, L. S. et al. Orbital-exchange and fractional quantum number excitations in an f-electron metal, Yb2Pt2Pb. Science 352, 1206–1210 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Dmitriev, D. V., Krivnov, V. Y., Ovchinnikov, A. A. & Langari, A. One-dimensional anisotropic Heisenberg model in the transverse magnetic field. J. Exp. Theor. Phys. 95, 538–549 (2002).

    Article  ADS  CAS  Google Scholar 

  30. Halati, C.-M., Wang, Z., Lorenz, T., Kollath, C. & Bernier, J.-S. Repulsively bound magnon excitations of a spin-\(\frac{1}{2}\) XXZ chain in a staggered transverse field. Phys. Rev. B 108, 224429 (2023).

    Article  ADS  CAS  Google Scholar 

  31. Daley, A. J., Kollath, C., Schollwöck, U. & Vidal, G. Time-dependent density-matrix renormalization-group using adaptive effective Hilbert spaces. J. Stat. Mech. P04005 (2004).

  32. White, S. R. & Feiguin, A. E. Real-time evolution using the density matrix renormalization group. Phys. Rev. Lett. 93, 076401 (2004).

    Article  ADS  PubMed  Google Scholar 

  33. Schollwöck, U. The density-matrix renormalization group in the age of matrix product states. Ann. Phys. 326, 96–192 (2011).

    Article  ADS  MathSciNet  Google Scholar 

  34. Kimura, S. et al. Novel ordering of an S = 1/2 quasi-1D Ising-like antiferromagnet in magnetic field. Phys. Rev. Lett. 100, 057202 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  35. Canévet, E. et al. Field-induced magnetic behavior in quasi-one-dimensional Ising-like antiferromagnet BaCo2V2O8: a single-crystal neutron diffraction study. Phys. Rev. B 87, 054408 (2013).

    Article  ADS  Google Scholar 

  36. Grenier, B. et al. Longitudinal and transverse Zeeman ladders in the Ising-like chain antiferromagnet BaCo2V2O8. Phys. Rev. Lett. 114, 017201 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Faure, Q. et al. Tomonaga-Luttinger liquid spin dynamics in the quasi-one-dimensional Ising-like antiferromagnet BaCo2V2O8. Phys. Rev. Lett. 123, 027204 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Wang, Z. et al. Quantum critical dynamics of a Heisenberg-Ising chain in a longitudinal field: many-body strings versus fractional excitations. Phys. Rev. Lett. 123, 067202 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Faure, Q. et al. Solitonic excitations in the Ising anisotropic chain BaCo2V2O8 under large transverse magnetic field. Phys. Rev. Res. 3, 043227 (2021).

    Article  ADS  CAS  Google Scholar 

  40. Okutani, A. et al. Spin excitations of the S = 1/2 one-dimensional Ising-like antiferromagnet BaCo2V2O8 in transverse magnetic fields. J. Phys. Soc. Jpn 90, 044704 (2021).

    Article  ADS  Google Scholar 

  41. Zvyagin, S. A. et al. Terahertz-range free-electron laser electron spin resonance spectroscopy: techniques and applications in high magnetic fields. Rev. Sci. Instrum. 80, 073102 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Wang, X. et al. Spin dynamics of the E8 particles. Preprint at https://doi.org/10.48550/arXiv.2308.00249 (2023).

  43. Fishman, M., White, S. R. & Stoudenmire, E. M. The ITensor software library for tensor network calculations. SciPost Phys. Codebases 4 https://scipost.org/10.21468/SciPostPhysCodeb.4 (2022).

  44. Halati, C.-M., Wang, Z., Kollath, C. & Bernier, J.-S. Theoretical simulations data for “Experimental observation of repulsively bound magnons”. Zenodo https://doi.org/10.5281/zenodo.11521387 (2024).

Download references

Acknowledgements

We thank M. Garst, T. Giamarchi, S. Wolff, J. Wu and H. Zou for helpful discussions. We acknowledge support by the European Research Council (ERC) under the Horizon 2020 research and innovation programme, grant agreement no. 950560 (DynaQuanta), by the Natural Sciences and Engineering Research Council of Canada (NSERC) (funding reference nos. RGPIN-2021-04338 and DGECR-2021-00359) and by the Swiss National Science Foundation under Division II grants 200020-188687 and 200020-219400. This research was supported in part by the National Science Foundation under grant nos. NSF PHY-1748958 and PHY-2309135. We acknowledge funding from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under project number 107745057 - TRR 180 (F5), project number 277146847 - CRC 1238 (A02, B01, B05, C05), project number 277625399 - TRR 185 (B4), project number 247310070 - SFB 1143, project number 511713970 - CRC 1639, project number 390858490 - EXC 2147 Cluster of Excellence Complexity and Topology in Quantum Matter (CT.QMAT) and project number 390534769 - EXC 2004/1 Cluster of Excellence Matter and Light for Quantum Computing (ML4Q). We also acknowledge the support of the HFML-RU/FOM and the HLD at Helmholtz-Zentrum Dresden-Rossendorf (HZDR), members of the European Magnetic Field Laboratory (EMFL). Parts of this research were carried out at ELBE at the HZDR, a member of the Helmholtz Association.

Author information

Authors and Affiliations

Authors

Contributions

Z.W. conceived the experiment and coordinated the project. C.-M.H., J.-S.B. and C.K. performed the theoretical analysis. Z.W., A.P., J.M.K. and S.Z. carried out the spectroscopic measurements. D.I.G., T.L. and Z.W. performed the magnetization measurements. S.N., O.B. and T.L. prepared and characterized the single crystals. Z.W., C.-M.H., J.-S.B. and C.K. analysed the data and interpreted the results. Z.W., C.-M.H., J.-S.B. and C.K. wrote the manuscript, with input from T.L. and A.L. All authors commented on the manuscript.

Corresponding author

Correspondence to Zhe Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Mitsuru Itoh and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Magnetization of BaCo2V2O8 as a function of the applied magnetic field along the crystallographic [110] direction15, that is, B[110].

The solid line shows the theoretical result, as a sum of a paramagnetic (PM) Van Vleck contribution (dotted line) and the contribution of the one-dimensional Heisenberg–Ising (HI) model in equation (1) (dashed line).

Extended Data Fig. 2 Dynamical spin structure factor \(\boldsymbol{\mathcal{S}}({\boldsymbol{q}},{\boldsymbol{\omega }})\) as a function of momentum q and frequency ω (see equation (3)) at an applied field of B = 45 T > Bc for various values of \({{\boldsymbol{g}}}_{{\bf{s}}}^{{\boldsymbol{x}}}\) corresponding to different effective staggering of the magnetic field.

a, Without a staggered field (that is, \({g}_{{\rm{s}}}^{x}=0\)), the spin dynamics is characterized by a single cosine-shaped band of unbound-magnon excitations, labelled as M. bd, With a finite staggered field (that is, \({g}_{{\rm{s}}}^{x}=0.31\), 0.66 and 0.94, respectively), this band is split into two bands, separated by a gap. The gap increases with increasing staggered field. The data in c correspond to the experimental value of the staggering in BaCo2V2O8 (see Fig. 4c). The blue lines are analytical results for the one-magnon excitations30.

Extended Data Fig. 3 Dynamical spin structure factor \(\boldsymbol{\mathcal{S}}({\boldsymbol{q}},{\boldsymbol{\omega }})\) as a function of momentum q and frequency ω (see equation (3)) at an applied field of B = 40.3 T ≈ Bc for various values of \({{\boldsymbol{g}}}_{{\bf{s}}}^{{\boldsymbol{x}}}\) corresponding to different effective staggering of the magnetic field.

Above the dashed line, the spectral weight of the repulsively bound two-magnon states (labelled as D) is multiplied by a factor of 10. The data in c correspond to the experimental value of the staggering for BaCo2V2O8 (see Fig. 4b).

Extended Data Fig. 4 Dynamical spin structure factor \(\boldsymbol{\mathcal{S}}({\boldsymbol{q}},{\boldsymbol{\omega }})\) as a function of momentum q and frequency ω (see equation (3)) at an applied field of B = 30 T (that is, 0 B < Bc) for various values of \({{\boldsymbol{g}}}_{{\bf{s}}}^{{\boldsymbol{x}}}\) corresponding to different effective staggering of the magnetic field.

a, Without a staggered field (that is, \({g}_{{\rm{s}}}^{x}=0\)), the high-energy features above the unbound-magnon excitation band are hard to identify. However, with increasing staggered field for \({g}_{{\rm{s}}}^{x}=0.31\) (b), for \({g}_{{\rm{s}}}^{x}=0.66\) (c) and for \({g}_{{\rm{s}}}^{x}=0.94\) (d), the spectral weight of the features of repulsively bound two-magnon and three-magnon excitations (labelled as D and T, respectively) can be clearly identified and is continuously enhanced. Above the dashed line, the spectral weight of the repulsively bound three-magnon states is multiplied by a factor of 10. The data in c correspond to the experimental value of the staggering for BaCo2V2O8 (see Fig. 4a).

Extended Data Fig. 5 Absorption coefficient measured in static magnetic fields.

a, The spectrum at 28 T with the single-magnon \({M}_{0}^{{\rm{u}}}\) and the repulsively bound two-magnon Dπ and Dπ/2 modes (see also Fig. 3). b, Zoom-in of the high-frequency spectral range corresponding to the Dπ/2 and the repulsively bound three-magnon Tπ/2 modes (as indicated by the arrows) measured at various fields.

Extended Data Table 1 The parameters J and Δ
Extended Data Table 2 The parameters of the g-values \({{\boldsymbol{g}}}_{{\bf{u}}}^{{\boldsymbol{x}}}\), \({{\boldsymbol{g}}}_{{\bf{s}}}^{{\boldsymbol{x}}}\) and gz

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Halati, CM., Bernier, JS. et al. Experimental observation of repulsively bound magnons. Nature (2024). https://doi.org/10.1038/s41586-024-07599-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41586-024-07599-3

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing