Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

From spreading depolarization to blood–brain barrier dysfunction: navigating traumatic brain injury for novel diagnosis and therapy

Abstract

Considerable strides in medical interventions during the acute phase of traumatic brain injury (TBI) have brought improved overall survival rates. However, following TBI, people often face ongoing, persistent and debilitating long-term complications. Here, we review the recent literature to propose possible mechanisms that lead from TBI to long-term complications, focusing particularly on the involvement of a compromised blood–brain barrier (BBB). We discuss evidence for the role of spreading depolarization as a key pathological mechanism associated with microvascular dysfunction and the transformation of astrocytes to an inflammatory phenotype. Finally, we summarize new predictive and diagnostic biomarkers and explore potential therapeutic targets for treating long-term complications of TBI.

Key points

  • Spreading depolarization (SD) is a hallmark of the immediate electrophysiological brain response to traumatic brain injury (TBI).

  • SD induces mitochondrial injury preferentially in the cellular elements of the vascular system, leading to breakdown of the blood–brain barrier (BBB).

  • BBB dysfunction can last for days to months or even years after TBI and might be associated with oedema, astrocytic and microglial activation, neuroinflammation, extracellular matrix alterations and modification of neuronal networks.

  • BBB dysfunction contributes to the long-term neurological complications of TBI, including facilitated brain ageing, cognitive impairments, depression and post-traumatic epilepsy.

  • Emerging methods for the assessment of SDs, mitochondrial dysfunction, neuroinflammation and BBB integrity, together with new treatment strategies that aim to facilitate repair of the neurovascular unit, offer new hope for the prevention of TBI-related complications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Spreading depolarization (SD) causing spreading hyperaemia and spreading ischaemia.
Fig. 2: Traumatic brain injury causes mitochondrial cristae damage.
Fig. 3: Mechanisms from traumatic brain injury-associated spreading depolarization to vascular injury.
Fig. 4: Glial cell activation after traumatic brain injury.
Fig. 5: Measurement of blood–brain barrier dysfunction using double contrast MRI.
Fig. 6: The mechanism from traumatic brain injury to neurodegeneration.

Similar content being viewed by others

References

  1. Maas, A. I. R. et al. Traumatic brain injury: integrated approaches to improve prevention, clinical care, and research. Lancet Neurol. 16, 987–1048 (2017).

    PubMed  Google Scholar 

  2. James, S. L. et al. Global, regional, and national burden of traumatic brain injury and spinal cord injury, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 18, 56–87 (2019).

    Google Scholar 

  3. Dewan, M. C. et al. Estimating the global incidence of traumatic brain injury. J. Neurosurg. 130, 1080–1097 (2019).

    Google Scholar 

  4. Cnossen, M. C. et al. Variation in monitoring and treatment policies for intracranial hypertension in traumatic brain injury: a survey in 66 neurotrauma centers participating in the CENTER-TBI study. Crit. Care 21, 233 (2017).

    PubMed  PubMed Central  Google Scholar 

  5. Dash, H. H. & Chavali, S. Management of traumatic brain injury patients. Korean J. Anesthesiol. 71, 12–21 (2018).

    PubMed  PubMed Central  Google Scholar 

  6. Valente, J. H. et al. Clinical policy: critical issues in the management of adult patients presenting to the emergency department with mild traumatic brain injury: approved by ACEP Board of Directors, February 1, 2023 Clinical Policy Endorsed by the Emergency Nurses Association (April 5, 2023). Ann. Emerg. Med. 81, e63–e105 (2023).

    PubMed  PubMed Central  Google Scholar 

  7. Bosch, M. et al. Implementing evidence-based recommended practices for the management of patients with mild traumatic brain injuries in Australian emergency care departments: study protocol for a cluster randomised controlled trial. Trials 15, 281 (2014).

    PubMed  PubMed Central  Google Scholar 

  8. Adelson, P. D., Alali, A. S. & Calland, J. F. American College of Surgeons Trauma Quality Improvement Program Guidelines, Best Practices in the Management of Traumatic Brain Injury https://www.facs.org/quality-programs/trauma/quality/best-practices-guidelines/ (2015).

  9. Maas, A. I. R. et al. Traumatic brain injury: progress and challenges in prevention, clinical care, and research. Lancet Neurol. 21, 1004–1060 (2022).

    PubMed  PubMed Central  Google Scholar 

  10. Carney, N. et al. Guidelines for the management of severe traumatic brain injury. Neurosurgery 80, 6–15 (2017).

    PubMed  Google Scholar 

  11. Hawryluk, G. W. J. et al. A management algorithm for patients with intracranial pressure monitoring: the Seattle International Severe Traumatic Brain Injury Consensus Conference (SIBICC). Intensive Care Med. 45, 1783–1794 (2019).

    PubMed  PubMed Central  Google Scholar 

  12. Stein, S. C., Georgoff, P., Meghan, S., Mizra, K. & Sonnad, S. S. 150 Years of treating severe traumatic brain injury: a systematic review of progress in mortality. J. Neurotrauma 27, 1343–1353 (2010).

    PubMed  Google Scholar 

  13. Stein, D. G. Embracing failure: what the phase III progesterone studies can teach about TBI clinical trials. Brain Inj. 29, 1259–1272 (2015).

    PubMed  PubMed Central  Google Scholar 

  14. Alves, J. L., Rato, J. & Silva, V. Why does brain trauma research fail? World Neurosurg. 130, 115–121 (2019).

    PubMed  Google Scholar 

  15. Hay, J. R., Johnson, V. E., Young, A. M. H., Smith, D. H. & Stewart, W. Blood–brain barrier disruption is an early event that may persist for many years after traumatic brain injury in humans. J. Neuropathol. Exp. Neurol. 74, 1147–1157 (2015).

    CAS  PubMed  Google Scholar 

  16. Weissberg, I. et al. Imaging blood–brain barrier dysfunction in football players. JAMA Neurol. 71, 1453–1455 (2014).

    PubMed  Google Scholar 

  17. Veksler, R. et al. Slow blood-to-brain transport underlies enduring barrier dysfunction in American football players. Brain 143, 1826–1842 (2020).

    PubMed  PubMed Central  Google Scholar 

  18. van Vliet, E. A. et al. Long-lasting blood–brain barrier dysfunction and neuroinflammation after traumatic brain injury. Neurobiol. Dis. 145, 105080 (2020).

    PubMed  Google Scholar 

  19. Shlosberg, D., Benifla, M., Kaufer, D. & Friedman, A. Blood–brain barrier breakdown as a therapeutic target in traumatic brain injury. Nat. Rev. Neurol. 6, 393–403 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Chodobski, A., Zink, B. J. & Szmydynger-Chodobska, J. Blood–brain barrier pathophysiology in traumatic brain injury. Transl. Stroke Res. 2, 492–516 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Tomkins, O. et al. Blood–brain barrier disruption results in delayed functional and structural alterations in the rat neocortex. Neurobiol. Dis. 25, 367–377 (2007).

    CAS  PubMed  Google Scholar 

  22. Dreier, J. P. & Reiffurth, C. The stroke-migraine depolarization continuum. Neuron 86, 902–922 (2015).

    CAS  PubMed  Google Scholar 

  23. Hartings, J. A. et al. Prognostic value of spreading depolarizations in patients with severe traumatic brain injury. JAMA Neurol. 77, 489–499 (2020).

    PubMed  Google Scholar 

  24. Parker, E. et al. Concussion susceptibility is mediated by spreading depolarization-induced neurovascular dysfunction. Brain 145, 2049–2063 (2022).

    PubMed  Google Scholar 

  25. Serlin, Y., Shelef, I., Knyazer, B. & Friedman, A. Anatomy and physiology of the blood–brain barrier. Semin. Cell Dev. Biol. 38, 2–6 (2015).

    PubMed  PubMed Central  Google Scholar 

  26. Abbott, N. J., Rönnbäck, L. & Hansson, E. Astrocyte–endothelial interactions at the blood–brain barrier. Nat. Rev. Neurosci. 7, 41–53 (2006).

    CAS  PubMed  Google Scholar 

  27. van Vliet, E. A., Aronica, E. & Gorter, J. A. Blood–brain barrier dysfunction, seizures and epilepsy. Semin. Cell Dev. Biol. 38, 26–34 (2015).

    PubMed  Google Scholar 

  28. Hawkins, B. T. & Davis, T. P. The blood–brain barrier/neurovascular unit in health and disease. Pharmacol. Rev. 57, 173 (2005).

    CAS  PubMed  Google Scholar 

  29. Abbott, N. J., Patabendige, A. A. K., Dolman, D. E. M., Yusof, S. R. & Begley, D. J. Structure and function of the blood–brain barrier. Neurobiol. Dis. 37, 13–25 (2010).

    CAS  PubMed  Google Scholar 

  30. Rodríguez-Baeza, A., Reina-de la Torre, F., Poca, A., Martí, M. & Garnacho, A. Morphological features in human cortical brain microvessels after head injury: a three-dimensional and immunocytochemical study. Anat. Rec. A Discov. Mol. Cell. Evol. Biol. 273A, 583–593 (2003).

    Google Scholar 

  31. Griffiths, D. R. et al. Chronic cognitive and cerebrovascular function after mild traumatic brain injury in rats. J. Neurotrauma 39, 1429–1441 (2022).

    PubMed  Google Scholar 

  32. Bhowmick, S., D’Mello, V., Caruso, D., Wallerstein, A. & Abdul-Muneer, P. M. Impairment of pericyte–endothelium crosstalk leads to blood–brain barrier dysfunction following traumatic brain injury. Exp. Neurol. 317, 260–270 (2019).

    CAS  PubMed  Google Scholar 

  33. Aboghazleh, R. et al. Brainstem and cortical spreading depolarization in a closed head injury rat model. Int. J. Mol. Sci. 22, 11642 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Strong, A. J. et al. Spreading and synchronous depressions of cortical activity in acutely injured human brain. Stroke 33, 2738–2743 (2002).

    PubMed  Google Scholar 

  35. Jeffcote, T. et al. Detection of spreading depolarization with intraparenchymal electrodes in the injured human brain. Neurocrit. Care 20, 21–31 (2014).

    PubMed  Google Scholar 

  36. Aboghazleh, R., Alkhamous, B., Turan, B. & Tuncer, M. C. Spreading depolarization: a phenomenon in the brain. Arch. Ital. Biol. 160, 30–43 (2022).

    Google Scholar 

  37. Dreier, J. P. The role of spreading depression, spreading depolarization and spreading ischemia in neurological disease. Nat. Med. 17, 439–447 (2011).

    CAS  PubMed  Google Scholar 

  38. Canals, S. et al. Longitudinal depolarization gradients along the somatodendritic axis of CA1 pyramidal cells: a novel feature of spreading depression. J. Neurophysiol. 94, 943–951 (2005).

    CAS  PubMed  Google Scholar 

  39. Dreier, J. P. et al. Correlates of spreading depolarization, spreading depression, and negative ultraslow potential in epidural versus subdural electrocorticography. Front. Neurosci. 13, 373 (2019).

    PubMed  PubMed Central  Google Scholar 

  40. Dreier, J. P. et al. Recording, analysis, and interpretation of spreading depolarizations in neurointensive care: review and recommendations of the COSBID research group. J. Cereb. Blood Flow Metab. https://doi.org/10.1177/0271678X16654496 (2017).

  41. Somjen, G. G. Mechanisms of spreading depression and hypoxic spreading depression-like depolarization. Physiol. Rev. 81, 1065–1096 (2001).

    CAS  PubMed  Google Scholar 

  42. Dreier, J. P. et al. Delayed ischaemic neurological deficits after subarachnoid haemorrhage are associated with clusters of spreading depolarizations. Brain 129, 3224–3237 (2006).

    PubMed  Google Scholar 

  43. Hartings, J. A. et al. Spreading depolarisations and outcome after traumatic brain injury: a prospective observational study. Lancet Neurol. 10, 1058–1064 (2011).

    PubMed  Google Scholar 

  44. Woitzik, J. et al. Propagation of cortical spreading depolarization in the human cortex after malignant stroke. Neurology 80, 1095–1102 (2013).

    PubMed  Google Scholar 

  45. Sramka, M., Brozek, G., Bures, J. & Nádvorník, P. Functional ablation by spreading depression: possible use in human stereotactic neurosurgery. Appl. Neurophysiol. 40, 48–61 (1977).

    PubMed  Google Scholar 

  46. Avoli, M. et al. Epileptiform activity induced by low extracellular magnesium in the human cortex maintained in vitro. Ann. Neurol. 30, 589–596 (1991).

    CAS  PubMed  Google Scholar 

  47. Fabricius, M. et al. Cortical spreading depression and peri-infarct depolarization in acutely injured human cerebral cortex. Brain 129, 778–790 (2006).

    PubMed  Google Scholar 

  48. Dohmen, C. et al. Spreading depolarizations occur in human ischemic stroke with high incidence. Ann. Neurol. 63, 720–728 (2008).

    PubMed  Google Scholar 

  49. Mohammad, L. M. et al. Spreading depolarization may represent a novel mechanism for delayed fluctuating neurological deficit after chronic subdural hematoma evacuation. J. Neurosurg. 134, 1294–1302 (2021).

    Google Scholar 

  50. Jing, J., Aitken, P. G. & Somjen, G. G. Interstitial volume changes during spreading depression (SD) and SD-like hypoxic depolarization in hippocampal tissue slices. J. Neurophysiol. 71, 2548–2551 (1994).

    CAS  PubMed  Google Scholar 

  51. Müller, M. & Somjen, G. G. Intrinsic optical signals in rat hippocampal slices during hypoxia-induced spreading depression-like depolarization. J. Neurophysiol. 82, 1818–1831 (1999).

    PubMed  Google Scholar 

  52. Revah, O., Lasser-Katz, E., Fleidervish, I. A. & Gutnick, M. J. The earliest neuronal responses to hypoxia in the neocortical circuit are glutamate-dependent. Neurobiol. Dis. 95, 158–167 (2016).

    CAS  PubMed  Google Scholar 

  53. Nilsson, P. et al. Epileptic seizure activity in the acute phase following cortical impact trauma in rat. Brain Res. 637, 227–232 (1994).

    CAS  PubMed  Google Scholar 

  54. Folkersma, H. et al. Increased cerebral (R)-[11C]PK11195 uptake and glutamate release in a rat model of traumatic brain injury: a longitudinal pilot study. J. Neuroinflammation 8, 67 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Vespa, P. et al. Increase in extracellular glutamate caused by reduced cerebral perfusion pressure and seizures after human traumatic brain injury: a microdialysis study. J. Neurosurg. 89, 971–982 (1998).

    CAS  PubMed  Google Scholar 

  56. Palmer, A. M., Marion, D. W., Botscheller, M. L., Bowen, D. M. & DeKosky, S. T. Increased transmitter amino acid concentration in human ventricular CSF after brain trauma. NeuroReport 6, 153–156 (1994).

    CAS  PubMed  Google Scholar 

  57. Gáspár, O. et al. Unexpected effects of peripherally administered kynurenic acid on cortical spreading depression and related blood–brain barrier permeability. Drug Des. Dev. Ther. 7, 981–987 (2013).

    Google Scholar 

  58. Parker, P. D. et al. Non-canonical glutamate signaling in a genetic model of migraine with aura. Neuron 109, 611–628.e8 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Enger, R. et al. Dynamics of ionic shifts in cortical spreading depression. Cereb. Cortex 25, 4469–4476 (2015).

    PubMed  PubMed Central  Google Scholar 

  60. Andrew, R. D. et al. Questioning glutamate excitotoxicity in acute brain damage: the importance of spreading depolarization. Neurocrit. Care 37, 11–30 (2022).

    PubMed  PubMed Central  Google Scholar 

  61. Jalini, S., Ye, H., Tonkikh, A. A., Charlton, M. P. & Carlen, P. L. Raised intracellular calcium contributes to ischemia-induced depression of evoked synaptic transmission. PLoS One 11, e0148110 (2016).

    PubMed  PubMed Central  Google Scholar 

  62. Fayuk, D., Aitken, P. G., Somjen, G. G. & Turner, D. A. Two different mechanisms underlie reversible, intrinsic optical signals in rat hippocampal slices. J. Neurophysiol. 87, 1924–1937 (2002).

    PubMed  Google Scholar 

  63. Balestrino, M., Young, J. & Aitken, P. Block of (Na+, K+)ATPase with ouabain induces spreading depression-like depolarization in hippocampal slices. Brain Res. 838, 37–44 (1999).

    CAS  PubMed  Google Scholar 

  64. Kirov, S. A., Fomitcheva, I. V. & Sword, J. Rapid neuronal ultrastructure disruption and recovery during spreading depolarization-induced cytotoxic edema. Cereb. Cortex 30, 5517–5531 (2020).

    PubMed  PubMed Central  Google Scholar 

  65. Kager, H., Wadman, W. J. & Somjen, G. G. Conditions for the triggering of spreading depression studied with computer simulations. J. Neurophysiol. 88, 2700–2712 (2002).

    CAS  PubMed  Google Scholar 

  66. Lindquist, B. E. & Shuttleworth, C. W. Adenosine receptor activation is responsible for prolonged depression of synaptic transmission after spreading depolarization in brain slices. Neuroscience 223, 365–376 (2012).

    CAS  PubMed  Google Scholar 

  67. Lindquist, B. E. & Shuttleworth, C. W. Evidence that adenosine contributes to Leao’s spreading depression in vivo. J. Cereb. Blood Flow Metab. 37, 1656–1669 (2016).

    PubMed  PubMed Central  Google Scholar 

  68. Murai, S. et al. Depolarization time and extracellular glutamate levels aggravate ultraearly brain injury after subarachnoid hemorrhage. Sci. Rep. 12, 10256 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Mosley, N. et al. Cortical spreading depolarization, blood flow, and cognitive outcomes in a closed head injury mouse model of traumatic brain injury. Neurocrit. Care 37, 102–111 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Von Baumgarten, L., Trabold, R., Thal, S., Back, T. & Plesnila, N. Role of cortical spreading depressions for secondary brain damage after traumatic brain injury in mice. J. Cereb. Blood Flow Metab. 28, 1353–1360 (2008).

    Google Scholar 

  71. Aiba, I. & Noebels, J. L. Spreading depolarization in the brainstem mediates sudden cardiorespiratory arrest in mouse SUDEP models. Sci. Transl. Med. 7, 282ra46 (2015).

    PubMed  PubMed Central  Google Scholar 

  72. Hosseini-Zare, M. S., Gu, F., Abdulla, A., Powell, S. & Žiburkus, J. Effects of experimental traumatic brain injury and impaired glutamate transport on cortical spreading depression. Exp. Neurol. 295, 155–161 (2017).

    CAS  PubMed  Google Scholar 

  73. Leo, L. et al. Increased susceptibility to cortical spreading depression in the mouse model of familial hemiplegic migraine type 2. PLoS Genet. 7, e1002129 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Reiffurth, C., Alam, M., Zahedi-Khorasani, M., Major, S. & Dreier, J. P. Na+/K+-ATPase α isoform deficiency results in distinct spreading depolarization phenotypes. J. Cereb. Blood Flow Metab. 40, 622–638 (2020).

    CAS  PubMed  Google Scholar 

  75. Hartings, J. A. et al. Spreading depolarizations and late secondary insults after traumatic brain injury. J. Neurotrauma 26, 1857–1866 (2009).

    PubMed  PubMed Central  Google Scholar 

  76. Dreier, J. P. et al. Spreading convulsions, spreading depolarization and epileptogenesis in human cerebral cortex. Brain 135, 259–275 (2012).

    PubMed  Google Scholar 

  77. Shuttleworth, C. W. et al. Which spreading depolarizations are deleterious to brain tissue? Neurocrit. Care 32, 317–322 (2020).

    PubMed  PubMed Central  Google Scholar 

  78. Frank, R., Bari, F., Menyhárt, Á. & Farkas, E. Comparative analysis of spreading depolarizations in brain slices exposed to osmotic or metabolic stress. BMC Neurosci. 22, 33 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. MacLean, M. A. et al. Memantine inhibits cortical spreading depolarization and improves neurovascular function following repetitive traumatic brain injury. Sci. Adv. 9, eadj2417 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. van Hameren, G. et al. Mitochondrial dysfunction underlies impaired neurovascular coupling following traumatic brain injury. Neurobiol. Dis. 186, 106269 (2023).

    PubMed  Google Scholar 

  81. Zhao, H. T. et al. Neurovascular dynamics of repeated cortical spreading depolarizations after acute brain injury. Cell Rep. 37, 109794 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Lückl, J. et al. The negative ultraslow potential, electrophysiological correlate of infarction in the human cortex. Brain 141, 1734–1752 (2018).

    PubMed  PubMed Central  Google Scholar 

  83. Kramer, D. R., Fujii, T., Ohiorhenuan, I. & Liu, C. Y. Interplay between cortical spreading depolarization and seizures. Stereotact. Funct. Neurosurg. 95, 1–5 (2017).

    PubMed  Google Scholar 

  84. Revankar, G. S. et al. in Seizures in Critical Care: A Guide to Diagnosis and Therapeutics Vol. 77 (Springer, 2017).

  85. Marino, S., Marani, L., Nazzaro, C., Beani, L. & Siniscalchi, A. Mechanisms of sodium azide-induced changes in intracellular calcium concentration in rat primary cortical neurons. Neurotoxicology 28, 622–629 (2007).

    CAS  PubMed  Google Scholar 

  86. Pisani, A. et al. Intracellular calcium increase in epileptiform activity: modulation by levetiracetam and lamotrigine. Epilepsia 45, 719–728 (2004).

    CAS  PubMed  Google Scholar 

  87. Dietz, R. M., Weiss, J. H. & Shuttleworth, C. W. Zn2+ influx is critical for some forms of spreading depression in brain slices. J. Neurosci. 28, 8014 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Dreier, J. P. et al. How spreading depolarization can be the pathophysiological correlate of both migraine aura and stroke. Acta Neurochir. Suppl. 120, 137–140 (2015).

    PubMed  Google Scholar 

  89. Foreman, B. et al. The relationship between seizures and spreading depolarizations in patients with severe traumatic brain injury. Neurocrit. Care 37, 31–48 (2022).

    PubMed  Google Scholar 

  90. Tamim, I. et al. Spreading depression as an innate antiseizure mechanism. Nat. Commun. 12, 2206 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Dreier, J. P. et al. Is spreading depolarization characterized by an abrupt, massive release of Gibbs free energy from the human brain cortex? Neuroscientist 19, 25–42 (2012).

    PubMed  PubMed Central  Google Scholar 

  92. Hablitz, J. J. & Heinemann, U. Alterations in the microenvironment during spreading depression associated with epileptiform activity in the immature neocortex. Dev. Brain Res. 46, 243–252 (1989).

    CAS  Google Scholar 

  93. Van Harreveld, A. & Stamm, J. S. Spreading cortical convulsions and depressions. J. Neurophysiol. 16, 352–366 (1953).

    PubMed  Google Scholar 

  94. Hubbard, W. B. et al. Acute mitochondrial impairment underlies prolonged cellular dysfunction after repeated mild traumatic brain injuries. J. Neurotrauma 36, 1252–1263 (2019).

    PubMed  PubMed Central  Google Scholar 

  95. Zhou, N., Gordon, G. R. J., Feighan, D. & MacVicar, B. A. Transient swelling, acidification, and mitochondrial depolarization occurs in neurons but not astrocytes during spreading depression. Cereb. Cortex 20, 2614–2624 (2010).

    PubMed  Google Scholar 

  96. Palzur, E., Edelman, D., Sakas, R. & Soustiel, J. F. Etifoxine restores mitochondrial oxidative phosphorylation and improves cognitive recovery following traumatic brain injury. Int. J. Mol. Sci. 22, 12881 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Galeffi, F., Somjen, G. G., Foster, K. A. & Turner, D. A. Simultaneous monitoring of tissue PO2 and NADH fluorescence during synaptic stimulation and spreading depression reveals a transient dissociation between oxygen utilization and mitochondrial redox state in rat hippocampal slices. J. Cereb. Blood Flow Metab. 31, 626–639 (2011).

    CAS  PubMed  Google Scholar 

  98. Toglia, P. & Ullah, G. Mitochondrial dysfunction and role in spreading depolarization and seizure. J. Comput. Neurosci. 47, 91–108 (2019).

    PubMed  Google Scholar 

  99. Kislin, M. et al. Reversible disruption of neuronal mitochondria by ischemic and traumatic injury revealed by quantitative two-photon imaging in the neocortex of anesthetized mice. J. Neurosci. 37, 333–348 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Lauritzen, M. Pathophysiology of the migraine aura: the spreading depression theory. Brain 117, 199–210 (1994).

    PubMed  Google Scholar 

  101. Piilgaard, H. & Lauritzen, M. Persistent increase in oxygen consumption and impaired neurovascular coupling after spreading depression in rat neocortex. J. Cereb. Blood Flow Metab. 29, 1517–1527 (2009).

    CAS  PubMed  Google Scholar 

  102. Ayata, C. et al. Pronounced hypoperfusion during spreading depression in mouse cortex. J. Cereb. Blood Flow Metab. https://doi.org/10.1097/01.WCB.0000137057.92786.F3 (2004).

  103. Koide, M., Sukhotinsky, I., Ayata, C. & Wellman, G. C. Subarachnoid hemorrhage, spreading depolarizations and impaired neurovascular coupling. Stroke Res. Treat. https://doi.org/10.1155/2013/819340 (2013).

  104. Shin, H. K. et al. Vasoconstrictive neurovascular coupling during focal ischemic depolarizations. J. Cereb. Blood Flow Metab. 26, 1018–1030 (2006).

    PubMed  Google Scholar 

  105. Strong, A. J. et al. Peri-infarct depolarizations lead to loss of perfusion in ischaemic gyrencephalic cerebral cortex. Brain 130, 995–1008 (2007).

    PubMed  Google Scholar 

  106. Hinzman, J. M. et al. Inverse neurovascular coupling to cortical spreading depolarizations in severe brain trauma. Brain 137, 2960–2972 (2014).

    PubMed  Google Scholar 

  107. Dreier, J. P. et al. Products of hemolysis in the subarachnoid space inducing spreading ischemia in the cortex and focal necrosis in rats: a model for delayed ischemic neurological deficits after subarachnoid hemorrhage? J. Neurosurg. 93, 658–666 (2000).

    CAS  PubMed  Google Scholar 

  108. Schuh-Hofer, S. et al. The cerebrovascular response to elevated potassium — role of nitric oxide in the in vitro model of isolated rat middle cerebral arteries. Neurosci. Lett. 306, 61–64 (2001).

    CAS  PubMed  Google Scholar 

  109. Tóth, R. et al. Astrocyte Ca2+ waves and subsequent non-synchronized Ca2+ oscillations coincide with arteriole diameter changes in response to spreading depolarization. Int. J. Mol. Sci. 22, 3442 (2021).

    PubMed  PubMed Central  Google Scholar 

  110. Ayata, C. & Lauritzen, M. Spreading depression, spreading depolarization, and the cerebral vasculature. Physiol. Rev. 95, 953–993 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Kniesel, U. & Wolburg, H. Tight junctions of the blood–brain barrier. Cell. Mol. Neurobiol. 20, 57–76 (2000).

    CAS  PubMed  Google Scholar 

  112. Nag, S., Venugopalan, R. & Stewart, D. J. Increased caveolin-1 expression precedes decreased expression of occludin and claudin-5 during blood–brain barrier breakdown. Acta Neuropathol. 114, 459–469 (2007).

    CAS  PubMed  Google Scholar 

  113. Nag, S., Manias, J. L. & Stewart, D. J. Pathology and new players in the pathogenesis of brain edema. Acta Neuropathol. 118, 197–217 (2009).

    PubMed  Google Scholar 

  114. De Bock, M. et al. Into rather unexplored terrain-transcellular transport across the blood–brain barrier. Glia 64, 1097–1123 (2016).

    PubMed  Google Scholar 

  115. Knowland, D. et al. Stepwise recruitment of transcellular and paracellular pathways underlies blood–brain barrier breakdown in stroke. Neuron 82, 603–617 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Kang, E. J. et al. Blood–brain barrier opening to large molecules does not imply blood–brain barrier opening to small ions. Neurobiol. Dis. 52, 204–218 (2013).

    CAS  PubMed  Google Scholar 

  117. Tagge, C. A. et al. Concussion, microvascular injury, and early tauopathy in young athletes after impact head injury and an impact concussion mouse model. Brain 141, 422–458 (2018).

    PubMed  PubMed Central  Google Scholar 

  118. Gursoy-Ozdemir, Y. et al. Cortical spreading depression activates and upregulates MMP-9. J. Clin. Invest. 113, 1447–1455 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Sadeghian, H. et al. Spreading depolarizations trigger caveolin-1-dependent endothelial transcytosis. Ann. Neurol. 84, 409–423 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Mayhan, W. G. & Didion, S. P. Glutamate-induced disruption of the blood–brain barrier in rats. Stroke 27, 965–970 (1996).

    CAS  PubMed  Google Scholar 

  121. Vazana, U. et al. Glutamate-mediated blood–brain barrier opening: implications for neuroprotection and drug delivery. J. Neurosci. 36, 7727–7739 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Prager, O. et al. Seizure-induced microvascular injury is associated with impaired neurovascular coupling and blood–brain barrier dysfunction. Epilepsia 60, 322–336 (2019).

    CAS  PubMed  Google Scholar 

  123. Yeung, D., Manias, J. L., Stewart, D. J. & Nag, S. Decreased junctional adhesion molecule — a expression during blood–brain barrier breakdown. Acta Neuropathol. 115, 635–642 (2008).

    CAS  PubMed  Google Scholar 

  124. Schmitt, R. et al. Mitochondrial dysfunction and apoptosis in brain microvascular endothelial cells following blast traumatic brain injury. Cell. Mol. Neurobiol. 43, 3639–3651 (2023).

    CAS  PubMed  Google Scholar 

  125. Uddin, M. A. et al. Hsp90 inhibition protects the brain microvascular endothelium against oxidative stress. Brain Disord. 1, 100001 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Jing, Y. et al. Aloin protects against blood–brain barrier damage after traumatic brain injury in mice. Neurosci. Bull. 36, 625–638 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Wu, Q. et al. Mdivi-1 alleviates blood–brain barrier disruption and cell death in experimental traumatic brain injury by mitigating autophagy dysfunction and mitophagy activation. Int. J. Biochem. Cell Biol. 94, 44–55 (2018).

    CAS  PubMed  Google Scholar 

  128. Sun, J. et al. Targeted delivery of PARP inhibitors to neuronal mitochondria via biomimetic engineered nanosystems in a mouse model of traumatic brain injury. Acta Biomater. 140, 573–585 (2022).

    CAS  PubMed  Google Scholar 

  129. Tao, X. et al. Protective actions of PJ34, a poly(ADP-ribose)polymerase inhibitor, on the blood–brain barrier after traumatic brain injury in mice. Neuroscience 291, 26–36 (2015).

    CAS  PubMed  Google Scholar 

  130. Malemud, C. J. Matrix metalloproteinases (MMPs) in health and disease: an overview. Front. Biosci. 11, 1696–1701 (2006).

    CAS  PubMed  Google Scholar 

  131. Sashindranath, M. et al. Compartment- and context-specific changes in tissue-type plasminogen activator (tPA) activity following brain injury and pharmacological stimulation. Lab. Invest. 91, 1079–1091 (2011).

    CAS  PubMed  Google Scholar 

  132. Guilfoyle, M. R. et al. Matrix metalloproteinase expression in contusional traumatic brain injury: a paired microdialysis study. J. Neurotrauma 32, 1553–1559 (2015).

    PubMed  PubMed Central  Google Scholar 

  133. Rosenberg, G. A. et al. TIMP-2 reduces proteolytic opening of blood–brain barrier by type IV collagenase. Brain Res. 576, 203–207 (1992).

    CAS  PubMed  Google Scholar 

  134. Minta, K. et al. Dynamics of cerebrospinal fluid levels of matrix metalloproteinases in human traumatic brain injury. Sci. Rep. 10, 18075 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Nichols, P. et al. Blood–brain barrier dysfunction significantly correlates with serum matrix metalloproteinase-7 (MMP-7) following traumatic brain injury. NeuroImage Clin. 31, 102741 (2021).

    PubMed  PubMed Central  Google Scholar 

  136. Harada, K., Suzuki, Y., Yamakawa, K., Kawakami, J. & Umemura, K. Combination of reactive oxygen species and tissue-type plasminogen activator enhances the induction of gelatinase B in brain endothelial cells. Int. J. Neurosci. 122, 53–59 (2012).

    CAS  PubMed  Google Scholar 

  137. Kim, G. W. et al. Neurodegeneration in striatum induced by the mitochondrial toxin 3-nitropropionic acid: role of matrix metalloproteinase-9 in early blood–brain barrier disruption? J. Neurosci. 23, 8733 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Kuru Bektaşoğlu, P. et al. Neuroprotective effect of plasminogen activator inhibitor-1 antagonist in the rat model of mild traumatic brain injury. Inflammation 44, 2499–2517 (2021).

    PubMed  Google Scholar 

  139. Muradashvili, N., Benton, R. L., Saatman, K. E., Tyagi, S. C. & Lominadze, D. Ablation of matrix metalloproteinase-9 gene decreases cerebrovascular permeability and fibrinogen deposition post traumatic brain injury in mice. Metab. Brain Dis. 30, 411–426 (2015).

    CAS  PubMed  Google Scholar 

  140. Sashindranath, M. et al. The tissue-type plasminogen activator–plasminogen activator inhibitor 1 complex promotes neurovascular injury in brain trauma: evidence from mice and humans. Brain 135, 3251–3264 (2012).

    PubMed  PubMed Central  Google Scholar 

  141. Griemert, E.-V. et al. Plasminogen activator inhibitor-1 augments damage by impairing fibrinolysis after traumatic brain injury. Ann. Neurol. 85, 667–680 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Kadry, H., Noorani, B. & Cucullo, L. A blood–brain barrier overview on structure, function, impairment, and biomarkers of integrity. Fluids Barriers CNS 17, 69 (2020).

    PubMed  PubMed Central  Google Scholar 

  143. Takata, F., Nakagawa, S., Matsumoto, J. & Dohgu, S. Blood–brain barrier dysfunction amplifies the development of neuroinflammation: understanding of cellular events in brain microvascular endothelial cells for prevention and treatment of BBB dysfunction. Front. Cell. Neurosci. 15, 661838 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Stanimirovic, D. B. & Friedman, A. Pathophysiology of the neurovascular unit: disease cause or consequence. J. Cereb. Blood Flow Metab. https://doi.org/10.1038/jcbfm.2012.25 (2012).

  145. Heinemann, U., Kaufer, D. & Friedman, A. Blood–brain barrier dysfunction, TGFβ signaling, and astrocyte dysfunction in epilepsy. Glia 60, 1251–1257 (2012).

    PubMed  PubMed Central  Google Scholar 

  146. MacLean, M. A., Kamintsky, L., Leck, E. D. & Friedman, A. The potential role of microvascular pathology in the neurological manifestations of coronavirus infection. Fluids Barriers CNS 17, 55 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Kaufer, D. & Friedman, A. Damage to a protective shield around the brain may lead to Alzheimer’s and other diseases. Sci. Am. https://www.scientificamerican.com/article/damage-to-a-protective-shield-around-the-brain-may-lead-to-alzheimers-and-other-diseases/ (2021).

  148. George, K. K., Heithoff, B. P., Shandra, O. & Robel, S. Mild traumatic brain injury/concussion initiates an atypical astrocyte response caused by blood–brain barrier dysfunction. J. Neurotrauma 39, 211–226 (2021).

    Google Scholar 

  149. Schachtrup, C. et al. Fibrinogen triggers astrocyte scar formation by promoting the availability of active TGF-β after vascular damage. J. Neurosci. 30, 5843–5854 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Ivens, S. et al. TGF-β receptor-mediated albumin uptake into astrocytes is involved in neocortical epileptogenesis. Brain 130, 535–547 (2007).

    PubMed  Google Scholar 

  151. Ralay Ranaivo, H. & Wainwright, M. S. Albumin activates astrocytes and microglia through mitogen-activated protein kinase pathways. Brain Res. 1313, 222–231 (2010).

    PubMed  Google Scholar 

  152. Simon, D. W. et al. The far-reaching scope of neuroinflammation after traumatic brain injury. Nat. Rev. Neurol. 13, 171–191 (2017).

    PubMed  PubMed Central  Google Scholar 

  153. Shohami, E., Novikov, M., Bass, R., Yamin, A. & Gallily, R. Closed head injury triggers early production of TNFa and IL-6 by brain tissue. J. Cereb. Blood Flow Metab 14, 615–619 (1994).

    CAS  PubMed  Google Scholar 

  154. Kovacs, Z. I. et al. Disrupting the blood–brain barrier by focused ultrasound induces sterile inflammation. Proc. Natl Acad. Sci. USA 114, E75–E84 (2017).

    CAS  PubMed  Google Scholar 

  155. Ronaldson, P. T. & Davis, T. P. Regulation of blood–brain barrier integrity by microglia in health and disease: a therapeutic opportunity. J. Cereb. Blood Flow Metab. https://doi.org/10.1177/0271678X20951995 (2020).

  156. Kim, H. et al. Reactive astrocytes transduce inflammation in a blood–brain barrier model through a TNF-STAT3 signaling axis and secretion of alpha 1-antichymotrypsin. Nat. Commun. 13, 6581 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Kim, S. Y., Buckwalter, M., Soreq, H., Vezzani, A. & Kaufer, D. Blood–brain barrier dysfunction-induced inflammatory signaling in brain pathology and epileptogenesis. Epilepsia 53, 37–44 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Liu, L. et al. Microglial calcium waves during the hyperacute phase of ischemic stroke. Stroke https://doi.org/10.1161/STROKEAHA.120.032766 (2021).

  159. Zhang, J. et al. Mitochondrial dysfunction and quality control lie at the heart of subarachnoid hemorrhage. Neural Regen. Res. 19, 825–832 (2024).

    PubMed  Google Scholar 

  160. Jassam, Y. N., Izzy, S., Whalen, M., McGavern, D. B. & el Khoury, J. Neuroimmunology of traumatic brain injury: time for a paradigm shift. Neuron https://doi.org/10.1016/j.neuron.2017.07.010 (2017).

  161. Engel, S. et al. Dynamics of microglial activation after human traumatic brain injury are revealed by delayed expression of macrophage-related proteins MRP8 and MRP14. Acta Neuropathol. 100, 313–322 (2000).

    CAS  PubMed  Google Scholar 

  162. Gentleman, S. M. et al. Long-term intracerebral inflammatory response after traumatic brain injury. Forensic Sci. Int. 146, 97–104 (2004).

    CAS  PubMed  Google Scholar 

  163. Beschorner, R. et al. CD14 expression by activated parenchymal microglia/macrophages and infiltrating monocytes following human traumatic brain injury. Acta Neuropathol. 103, 541–549 (2002).

    CAS  PubMed  Google Scholar 

  164. Mody, I., Lambert, J. D. & Heinemann, U. Low extracellular magnesium induces epileptiform activity and spreading depression in rat hippocampal slices. J. Neurophysiol. 57, 869–888 (1987).

    CAS  PubMed  Google Scholar 

  165. Kovács, R., Heinemann, U. & Steinhäuser, C. Mechanisms underlying blood–brain barrier dysfunction in brain pathology and epileptogenesis: role of astroglia. Epilepsia 53, 53–59 (2012).

    PubMed  Google Scholar 

  166. Beitchman, J. A. et al. Experimental traumatic brain injury induces chronic glutamatergic dysfunction in amygdala circuitry known to regulate anxiety-like behavior. Front. Neurosci. 13, 1434 (2020).

    PubMed  PubMed Central  Google Scholar 

  167. Warren, K. M., Reeves, T. M. & Phillips, L. L. MT5-MMP, ADAM-10, and N-cadherin act in concert to facilitate synapse reorganization after traumatic brain injury. J. Neurotrauma 29, 1922–1940 (2012).

    PubMed  PubMed Central  Google Scholar 

  168. Phillips, L. L., Chan, J. L., Doperalski, A. E. & Reeves, T. M. Time dependent integration of matrix metalloproteinases and their targeted substrates directs axonal sprouting and synaptogenesis following central nervous system injury. Neural Regen. Res. 9, 362–376 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Aungst, S. L., Kabadi, S. V., Thompson, S. M., Stoica, B. A. & Faden, A. I. Repeated mild traumatic brain injury causes chronic neuroinflammation, changes in hippocampal synaptic plasticity, and associated cognitive deficits. J. Cereb. Blood Flow Metab. 34, 1223–1232 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Kim, S. Y., Porter, B. E., Friedman, A. & Kaufer, D. A potential role for glia-derived extracellular matrix remodeling in postinjury epilepsy. J. Neurosci. Res. 94, 794–803 (2016).

    CAS  PubMed  Google Scholar 

  171. Pijet, B. et al. Elevation of MMP-9 levels promotes epileptogenesis after traumatic brain injury. Mol. Neurobiol. 55, 9294–9306 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Frankowski, J. C. et al. Brain-wide reconstruction of inhibitory circuits after traumatic brain injury. Nat. Commun. 13, 3417 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Hanly, J. G. et al. Resting state functional connectivity in SLE patients and association with cognitive impairment and blood–brain barrier permeability. Rheumatology 62, 685–695 (2023).

    PubMed  Google Scholar 

  174. Sharp, D. J., Scott, G. & Leech, R. Network dysfunction after traumatic brain injury. Nat. Rev. Neurol. 10, 156–166 (2014).

    PubMed  Google Scholar 

  175. Vespa, P. M. et al. Nonconvulsive seizures after traumatic brain injury are associated with hippocampal atrophy. Neurology 75, 792–798 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Swartz, B. E. et al. Hippocampal cell loss in posttraumatic human epilepsy. Epilepsia 47, 1373–1382 (2006).

    PubMed  Google Scholar 

  177. Dulla, C. G., Coulter, D. A. & Ziburkus, J. From molecular circuit dysfunction to disease: case studies in epilepsy, traumatic brain injury, and Alzheimer’s disease. Neuroscientist 22, 295–312 (2015).

    PubMed  PubMed Central  Google Scholar 

  178. Marchi, N., Granata, T., Ghosh, C. & Janigro, D. Blood–brain barrier dysfunction and epilepsy: pathophysiologic role and therapeutic approaches. Epilepsia 53, 1877–1886 (2012).

    PubMed  PubMed Central  Google Scholar 

  179. Cook, C. J. et al. Effective connectivity within the default mode network in left temporal lobe epilepsy: findings from the Epilepsy Connectome Project. Brain Connect. 9, 174–183 (2018).

    Google Scholar 

  180. Fordington, S. & Manford, M. A review of seizures and epilepsy following traumatic brain injury. J. Neurol. 267, 3105–3111 (2020).

    PubMed  PubMed Central  Google Scholar 

  181. Tomkins, O. et al. Blood–brain barrier breakdown following traumatic brain injury: a possible role in posttraumatic epilepsy. Cardiovasc. Psychiatry Neurol. 2011, 765923 (2011).

    PubMed  PubMed Central  Google Scholar 

  182. Izzy, S. et al. Association of traumatic brain injury with the risk of developing chronic cardiovascular, endocrine, neurological, and psychiatric disorders. JAMA Netw. Open 5, e229478 (2022).

    PubMed  PubMed Central  Google Scholar 

  183. Futtrup, J. et al. Blood–brain barrier pathology in patients with severe mental disorders: a systematic review and meta-analysis of biomarkers in case–control studies. Brain Behav. Immun. Health 6, 100102 (2020).

    PubMed  PubMed Central  Google Scholar 

  184. Greene, C., Hanley, N. & Campbell, M. Blood–brain barrier associated tight junction disruption is a hallmark feature of major psychiatric disorders. Transl. Psychiatry 10, 373 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Menard, C. et al. Social stress induces neurovascular pathology promoting depression. Nat. Neurosci. 20, 1752–1760 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Oral, E., Halici, Z., Cinar, I., Ozcan, E. & Kutlu, Z. Evaluation of endothelial dysfunction in bipolar affective disorders: serum endocan and urotensin-II levels. Clin. Psychopharmacol. Neurosci. 17, 211–221 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Kamintsky, L. et al. Blood–brain barrier imaging as a potential biomarker for bipolar disorder progression. Neuroimage Clin. 26, 102049 (2020).

    PubMed  Google Scholar 

  188. Calkin, C., McClelland, C., Cairns, K., Kamintsky, L. & Friedman, A. Insulin resistance and blood–brain barrier dysfunction underlie neuroprogression in bipolar disorder. Front. Psychiatry 12, 636174 (2021).

    PubMed  PubMed Central  Google Scholar 

  189. Kamintsky, L. et al. Blood–brain barrier leakage in systemic lupus erythematosus is associated with gray matter loss and cognitive impairment. Ann. Rheum. Dis. 79, 1580–1587 (2020).

    CAS  PubMed  Google Scholar 

  190. Çavuş, I. et al. Elevated basal glutamate and unchanged glutamine and GABA in refractory epilepsy: microdialysis study of 79 patients at the Yale Epilepsy Surgery Program. Ann. Neurol. 80, 35–45 (2016).

    PubMed  Google Scholar 

  191. Verma, M., Lizama, B. N. & Chu, C. T. Excitotoxicity, calcium and mitochondria: a triad in synaptic neurodegeneration. Transl. Neurodegener. 11, 3 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Sweeney, M. D., Sagare, A. P. & Zlokovic, B. V. Blood–brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat. Rev. Neurol. 14, 133–150 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Zlokovic, B. V. Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nat. Rev. Neurosci. 12, 723–738 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Senatorov, V. V. et al. Blood–brain barrier dysfunction in aging induces hyperactivation of TGFβ signaling and chronic yet reversible neural dysfunction. Sci. Transl. Med. 11, eaaw8283 (2019).

    CAS  PubMed  Google Scholar 

  195. McKee, A. C., Stein, T. D., Kiernan, P. T. & Alvarez, V. E. The neuropathology of chronic traumatic encephalopathy. Brain Pathol. 25, 350–364 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. McKee, A. C. et al. The first NINDS/NIBIB consensus meeting to define neuropathological criteria for the diagnosis of chronic traumatic encephalopathy. Acta Neuropathol. 131, 75–86 (2016).

    CAS  PubMed  Google Scholar 

  197. Goldstein, L. E. et al. Chronic traumatic encephalopathy in blast-exposed military veterans and a blast neurotrauma mouse model. Sci. Transl. Med. 4, 134ra60 (2012).

    PubMed  PubMed Central  Google Scholar 

  198. Doherty, C. P. et al. Blood–brain barrier dysfunction as a hallmark pathology in chronic traumatic encephalopathy. J. Neuropathol. Exp. Neurol. 75, 656–662 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Nation, D. A. et al. Blood–brain barrier breakdown is an early biomarker of human cognitive dysfunction. Nat. Med. 25, 270–276 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Diaz-Arrastia, R. et al. Acute biomarkers of traumatic brain injury: relationship between plasma levels of ubiquitin C-terminal hydrolase-L1 and glial fibrillary acidic protein. J. Neurotrauma 31, 19–25 (2013).

    PubMed  Google Scholar 

  201. US Food and Drug Administration. FDA Authorizes Marketing of First Blood Test to Aid in the Evaluation of Concussion in Adults. https://www.fda.gov/news-events/press-announcements/fda-authorizes-marketing-first-blood-test-aid-evaluation-concussion-adults (2018).

  202. Dreier, J. P. et al. Spreading depolarizations in ischaemia after subarachnoid haemorrhage, a diagnostic phase III study. Brain 145, 1264–1284 (2022).

    PubMed  Google Scholar 

  203. Eriksen, N. et al. Neurostereologic lesion volumes and spreading depolarizations in severe traumatic brain injury patients: a pilot study. Neurocrit. Care 30, 557–568 (2019).

    PubMed  Google Scholar 

  204. Hartings, J. A. et al. Improving neurotrauma by depolarization inhibition with combination therapy: a phase 2 randomized feasibility trial. Neurosurgery 93, 924–931 (2023).

    PubMed  PubMed Central  Google Scholar 

  205. Chamanzar, A., Elmer, J., Shutter, L., Hartings, J. & Grover, P. Noninvasive and reliable automated detection of spreading depolarization in severe traumatic brain injury using scalp EEG. Commun. Med. 3, 113 (2023).

    PubMed  PubMed Central  Google Scholar 

  206. Meinert, F. et al. Subdural placement of electrocorticographic electrode array through a burr hole exposure: 2-dimensional operative video. Oper. Neurosurg. 23, e169 (2022).

    Google Scholar 

  207. Meinert, F. et al. Less-invasive subdural electrocorticography for investigation of spreading depolarizations in patients with subarachnoid hemorrhage. Front. Neurol. 13, 1091987 (2023).

    PubMed  PubMed Central  Google Scholar 

  208. Bulstrode, H. et al. Mitochondrial DNA and traumatic brain injury. Ann. Neurol. 75, 186–195 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Kayhanian, S. et al. Cell-free mitochondrial DNA in acute brain injury. Neurotrauma Rep. 3, 415–420 (2022).

    PubMed  PubMed Central  Google Scholar 

  210. Kilbaugh, T. J. et al. Peripheral blood mitochondrial DNA as a biomarker of cerebral mitochondrial dysfunction following traumatic brain injury in a porcine model. PLoS One 10, e0130927 (2015).

    PubMed  PubMed Central  Google Scholar 

  211. Tang, T. Z. et al. Serum amyloid A and mitochondrial DNA in extracellular vesicles are novel markers for detecting traumatic brain injury in a mouse model. iScience 27, 108932 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Visser, K. et al. Blood-based biomarkers of inflammation in mild traumatic brain injury: a systematic review. Neurosci. Biobehav. Rev. 132, 154–168 (2022).

    CAS  PubMed  Google Scholar 

  213. Werhane, M. L. et al. Pathological vascular and inflammatory biomarkers of acute- and chronic-phase traumatic brain injury. Concussion 2, CNC30 (2017).

    PubMed  PubMed Central  Google Scholar 

  214. Hier, D. B. et al. Blood biomarkers for mild traumatic brain injury: a selective review of unresolved issues. Biomark. Res. 9, 70 (2021).

    PubMed  PubMed Central  Google Scholar 

  215. Ceyzériat, K. et al. Reactive astrocytes mediate TSPO overexpression in response to sustained CNTF exposure in the rat striatum. Mol. Brain 16, 57 (2023).

    PubMed  PubMed Central  Google Scholar 

  216. Coughlin, J. M. et al. Imaging of glial cell activation and white matter integrity in brains of active and recently retired national football league players. JAMA Neurol. 74, 67–74 (2017).

    PubMed  PubMed Central  Google Scholar 

  217. Coughlin, J. M. et al. Neuroinflammation and brain atrophy in former NFL players: an in vivo multimodal imaging pilot study. Neurobiol. Dis. 74, 58–65 (2015).

    PubMed  Google Scholar 

  218. Ramlackhansingh, A. F. et al. Inflammation after trauma: microglial activation and traumatic brain injury. Ann. Neurol. 70, 374–383 (2011).

    PubMed  Google Scholar 

  219. Mahmud, M. et al. Translocator protein PET imaging in temporal lobe epilepsy: a reliable test–retest study using asymmetry index. Front. Neuroimaging 2, 1142463 (2023).

    PubMed  PubMed Central  Google Scholar 

  220. Varlow, C., Knight, A. C., McQuade, P. & Vasdev, N. Characterization of neuroinflammatory positron emission tomography biomarkers in chronic traumatic encephalopathy. Brain Commun. 4, fcac019 (2022).

    PubMed  PubMed Central  Google Scholar 

  221. Czeiter, E. et al. Blood biomarkers on admission in acute traumatic brain injury: relations to severity, CT findings and care path in the CENTER-TBI study. eBioMedicine 56, 102785 (2020).

    PubMed  PubMed Central  Google Scholar 

  222. Helmrich, I. R. A. R. et al. Incremental prognostic value of acute serum biomarkers for functional outcome after traumatic brain injury (CENTER-TBI): an observational cohort study. Lancet Neurol. 21, 792–802 (2022).

    CAS  PubMed  Google Scholar 

  223. Yue, J. K. et al. Neuroinflammatory biomarkers for traumatic brain injury diagnosis and prognosis: a TRACK-TBI pilot study. Neurotrauma Rep. 4, 171–183 (2023).

    PubMed  PubMed Central  Google Scholar 

  224. Kumar, R. G., Boles, J. A. & Wagner, A. K. Chronic inflammation after severe traumatic brain injury: characterization and associations with outcome at 6 and 12 months postinjury. J. Head Trauma Rehabil. 30, 369–381 (2015).

    PubMed  Google Scholar 

  225. Johnson, N. H. et al. Inflammatory biomarkers of traumatic brain injury. Pharmaceuticals 15, 660 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  226. Kerr, N. et al. Inflammasome proteins as biomarkers of traumatic brain injury. PLoS One 13, e0210128 (2019).

    Google Scholar 

  227. Duan, M., Liu, Y., Li, F., Lu, L. & Chen, Y.-C. Cerebral blood flow network differences correlated with cognitive impairment in mild traumatic brain injury. Front. Neurosci. 16, 969971 (2022).

    PubMed  PubMed Central  Google Scholar 

  228. Lin, C.-M. et al. Arterial spin labeling perfusion study in the patients with subacute mild traumatic brain injury. PLoS One 11, e0149109 (2016).

    PubMed  PubMed Central  Google Scholar 

  229. Barlow, K. M. et al. Cerebral blood flow predicts recovery in children with persistent post-concussion symptoms after mild traumatic brain injury. J. Neurotrauma 38, 2275–2283 (2021).

    PubMed  PubMed Central  Google Scholar 

  230. Gaggi, N. L. et al. Temporal dynamics of cerebral blood flow during the first year after moderate–severe traumatic brain injury: a longitudinal perfusion MRI study. NeuroImage Clin. 37, 103344 (2023).

    PubMed  PubMed Central  Google Scholar 

  231. Khalifa, F. et al. Models and methods for analyzing DCE-MRI: a review. Med. Phys. 41, 124301 (2014).

    PubMed  Google Scholar 

  232. O’Keeffe, E. et al. Dynamic blood–brain barrier regulation in mild traumatic brain injury. J. Neurotrauma 37, 347–356 (2019).

    PubMed  PubMed Central  Google Scholar 

  233. Ware, J. B. et al. Dynamic contrast enhanced MRI for characterization of blood–brain-barrier dysfunction after traumatic brain injury. NeuroImage Clin. 36, 103236 (2022).

    PubMed  PubMed Central  Google Scholar 

  234. Greene, C. et al. Microvascular stabilization via blood–brain barrier regulation prevents seizure activity. Nat. Commun. 13, 2003 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  235. Csuka, E. et al. IL-10 levels in cerebrospinal fluid and serum of patients with severe traumatic brain injury: relationship to IL-6, TNF-α, TGF-β1 and blood–brain barrier function. J. Neuroimmunol. 101, 211–221 (1999).

    CAS  PubMed  Google Scholar 

  236. Zetterberg, H. et al. Neurochemical aftermath of amateur boxing. Arch. Neurol. 63, 1277–1280 (2006).

    PubMed  Google Scholar 

  237. Shahim, P. et al. Cerebrospinal fluid brain injury biomarkers in children: a multicenter study. Pediatr. Neurol. 49, 31–39.e2 (2013).

    PubMed  Google Scholar 

  238. Lublinsky, S. et al. Early blood–brain barrier dysfunction predicts neurological outcome following aneurysmal subarachnoid hemorrhage. eBioMedicine 43, 460–472 (2019).

    PubMed  PubMed Central  Google Scholar 

  239. Jewell, S. et al. Development and evaluation of a method for automated detection of spreading depolarizations in the injured human brain. Neurocrit. Care 35, 160–175 (2021).

    PubMed  PubMed Central  Google Scholar 

  240. Klein, P. et al. Repurposed molecules for antiepileptogenesis: missing an opportunity to prevent epilepsy? Epilepsia 61, 359–386 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  241. Sakowitz, O. W. et al. Preliminary evidence that ketamine inhibits spreading depolarizations in acute human brain injury. Stroke 40, e519–e522 (2009).

    CAS  PubMed  Google Scholar 

  242. Carlson, A. P., Abbas, M., Alunday, R. L., Qeadan, F. & Shuttleworth, C. W. Spreading depolarization in acute brain injury inhibited by ketamine: a prospective, randomized, multiple crossover trial. J. Neurosurg. 130, 1513–1519 (2019).

    Google Scholar 

  243. Hertle, D. N. et al. Effect of analgesics and sedatives on the occurrence of spreading depolarizations accompanying acute brain injury. Brain 135, 2390–2398 (2012).

    PubMed  Google Scholar 

  244. Santos, E. et al. Lasting s-ketamine block of spreading depolarizations in subarachnoid hemorrhage: a retrospective cohort study. Crit. Care 23, 427 (2019).

    PubMed  PubMed Central  Google Scholar 

  245. Reinhart, K. M., Humphrey, A., Brennan, K. C., Carlson, A. P. & Shuttleworth, C. W. Memantine improves recovery after spreading depolarization in brain slices and can be considered for future clinical trials. Neurocrit. Care 35, 135–145 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  246. Khan, S., Ali, A. S., Kadir, B., Ahmed, Z. & Di Pietro, V. Effects of memantine in patients with traumatic brain injury: a systematic review. Trauma Care 1, 1–14 (2021).

    Google Scholar 

  247. Muir, K. W. Glutamate-based therapeutic approaches: clinical trials with NMDA antagonists. Curr. Opin. Pharmacol. 6, 53–60 (2006).

    CAS  PubMed  Google Scholar 

  248. Morris, G. F. et al. Failure of the competitive N-methyl-d-aspartate antagonist Selfotel (CGS 19755) in the treatment of severe head injury: results of two phase III clinical trials. J. Neurosurg. 91, 737–743 (1999).

    CAS  PubMed  Google Scholar 

  249. Maas, A. I. R. et al. Efficacy and safety of dexanabinol in severe traumatic brain injury: results of a phase III randomised, placebo-controlled, clinical trial. Lancet Neurol. 5, 38–45 (2006).

    CAS  PubMed  Google Scholar 

  250. Novorolsky, R. J. et al. The cell-permeable mitochondrial calcium uniporter inhibitor Ru265 preserves cortical neuron respiration after lethal oxygen glucose deprivation and reduces hypoxic/ischemic brain injury. J. Cereb. Blood Flow Metab. 40, 1172–1181 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  251. Chitturi, J., Santhakumar, V. & Kannurpatti, S. S. Traumatic brain injury metabolome and mitochondrial impact after early stage Ru360 treatment. Mitochondrion 57, 192–204 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  252. Yonutas, H. M. et al. Bioenergetic restoration and neuroprotection after therapeutic targeting of mitoNEET: new mechanism of pioglitazone following traumatic brain injury. Exp. Neurol. 327, 113243 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  253. Chavez, J. D. et al. Mitochondrial protein interaction landscape of SS-31. Proc. Natl Acad. Sci. USA 117, 15363–15373 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  254. Zhu, Y. et al. SS-31 provides neuroprotection by reversing mitochondrial dysfunction after traumatic brain injury. Oxid. Med. Cell. Longev. 2018, 4783602 (2018).

    PubMed  PubMed Central  Google Scholar 

  255. Tarantini, S. et al. Treatment with the mitochondrial-targeted antioxidant peptide SS-31 rescues neurovascular coupling responses and cerebrovascular endothelial function and improves cognition in aged mice. Aging Cell 17, e12731 (2018).

    PubMed  PubMed Central  Google Scholar 

  256. Kelsen, J. et al. Copenhagen Head Injury Ciclosporin Study: a phase IIa safety, pharmacokinetics, and biomarker study of ciclosporin in severe traumatic brain injury patients. J. Neurotrauma 36, 3253–3263 (2019).

    PubMed  PubMed Central  Google Scholar 

  257. Hansson, M. J. & Elmér, E. Cyclosporine as therapy for traumatic brain injury. Neurotherapeutics 20, 1482–1495 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  258. Singh, A., Faccenda, D. & Campanella, M. Pharmacological advances in mitochondrial therapy. eBioMedicine https://doi.org/10.1016/j.ebiom.2021.103244 (2021).

  259. Lassarén, P. et al. Systemic inflammation alters the neuroinflammatory response: a prospective clinical trial in traumatic brain injury. J. Neuroinflammation 18, 221 (2021).

    PubMed  PubMed Central  Google Scholar 

  260. Scott, G. et al. Minocycline reduces chronic microglial activation after brain trauma but increases neurodegeneration. Brain 141, 459–471 (2018).

    PubMed  Google Scholar 

  261. Robertson, C. S. et al. Phase II clinical trial of atorvastatin in mild traumatic brain injury. J. Neurotrauma 34, 1394–1401 (2016).

    Google Scholar 

  262. Hong, S. et al. Losartan inhibits development of spontaneous recurrent seizures by preventing astrocyte activation and attenuating blood–brain barrier permeability following pilocarpine-induced status epilepticus. Brain Res. Bull. 149, 251–259 (2019).

    CAS  PubMed  Google Scholar 

  263. Bar-Klein, G. et al. Losartan prevents acquired epilepsy via TGF-β signaling suppression. Ann. Neurol. 75, 864–875 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  264. Smyth, L. C. D. et al. Characterisation of PDGF-BB:PDGFRβ signalling pathways in human brain pericytes: evidence of disruption in Alzheimer’s disease. Commun. Biol. 5, 235 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  265. Arango-Lievano, M. et al. Topographic reorganization of cerebrovascular mural cells under seizure conditions. Cell Rep. 23, 1045–1059 (2018).

    CAS  PubMed  Google Scholar 

  266. Dreier, J. P., Lemale, C. L., Kola, V., Friedman, A. & Schoknecht, K. Spreading depolarization is not an epiphenomenon but the principal mechanism of the cytotoxic edema in various gray matter structures of the brain during stroke. Neuropharmacology 134, 189–207 (2018).

    CAS  PubMed  Google Scholar 

  267. Farkas, E., Pratt, R., Sengpiel, F. & Obrenovitch, T. P. Direct, live imaging of cortical spreading depression and anoxic depolarisation using a fluorescent, voltage-sensitive dye. J. Cereb. Blood Flow Metab. 28, 251–262 (2008).

    CAS  PubMed  Google Scholar 

  268. Dreier, J. P. et al. Nitric oxide scavenging by hemoglobin or nitric oxide synthase inhibition by N-nitro-l-arginine induces cortical spreading ischemia when K+ is increased in the subarachnoid space. J. Cereb. Blood Flow Metab. 18, 978–990 (1998).

    CAS  PubMed  Google Scholar 

  269. Schwab, N., Leung, E. & Hazrati, L.-N. Cellular senescence in traumatic brain injury: evidence and perspectives. Front. Aging Neurosci. 13, 742632 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  270. Pertusa, M., García-Matas, S., Rodríguez-Farré, E., Sanfeliu, C. & Cristòfol, R. Astrocytes aged in vitro show a decreased neuroprotective capacity. J. Neurochem. 101, 794–805 (2007).

    CAS  PubMed  Google Scholar 

  271. Bussian, T. J. et al. Clearance of senescent glial cells prevents tau-dependent pathology and cognitive decline. Nature 562, 578–582 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  272. Schwab, N. et al. Neurons and glial cells acquire a senescent signature after repeated mild traumatic brain injury in a sex-dependent manner. Front. Neurosci. 16, 1027116 (2022).

    PubMed  PubMed Central  Google Scholar 

  273. Ritzel, R. M. et al. Old age increases microglial senescence, exacerbates secondary neuroinflammation, and worsens neurological outcomes after acute traumatic brain injury in mice. Neurobiol. Aging 77, 194–206 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  274. Yamazaki, Y. et al. Vascular cell senescence contributes to blood–brain barrier breakdown. Stroke 47, 1068–1077 (2016).

    PubMed  PubMed Central  Google Scholar 

  275. Preininger, M. K., Zaytseva, D., Lin, J. M. & Kaufer, D. Blood–brain barrier dysfunction promotes astrocyte senescence through albumin-induced TGFβ signaling activation. Aging Cell https://doi.org/10.1111/acel.13747 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  276. Bitto, A. et al. Stress-induced senescence in human and rodent astrocytes. Exp. Cell Res. 316, 2961–2968 (2010).

    CAS  PubMed  Google Scholar 

  277. Vallée, A., Lecarpentier, Y., Guillevin, R. & Vallée, J.-N. Interactions between TGF-β1, canonical WNT/β-catenin pathway and PPAR γ in radiation-induced fibrosis. Oncotarget 8, 90579–90604 (2017).

    PubMed  PubMed Central  Google Scholar 

  278. Preininger, M. K. & Kaufer, D. Blood–brain barrier dysfunction and astrocyte senescence as reciprocal drivers of neuropathology in aging. Int. J. Mol. Sci. 23, 6217 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank C. Lemale, S. Mirloo and N. T. Pham for providing their recordings and figures. This work was supported by the Canadian Institutes of Health Research (PJT 180636 and 186067), the Israel Science Foundation (2254/20) and the US–Israel Binational Science Foundation (2021133). In addition, this work was funded by the Citizens United for Research in Epilepsy, doing business as CURE Epilepsy (957373) and the Deanship of the Scientific Research, Al-Balqa Applied University (DSR-2022#484). J.P.D. and A.F. report a grant from the Era-Net Neuron EBio2 with funds from BMBF 01EW2004 and CIHR Award No. NDD 168164. J.P.D. reports a grant from DFG DR 323/10-2.

Author information

Authors and Affiliations

Authors

Contributions

G.v.H., R.A. and E.P. researched data for the article. All authors contributed substantially to discussion of the content. G.v.H., R.A. and E.P. wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Alon Friedman.

Ethics declarations

Competing interests

The authors report no competing interests.

Peer review

Peer review information

Nature Reviews Neurology thanks Brad Hubbard; Laura Ngwenya, who co-reviewed with Anthony DeSana; David Loane, who co-reviewed with Gloria Vegliante; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Hameren, G., Aboghazleh, R., Parker, E. et al. From spreading depolarization to blood–brain barrier dysfunction: navigating traumatic brain injury for novel diagnosis and therapy. Nat Rev Neurol 20, 408–425 (2024). https://doi.org/10.1038/s41582-024-00973-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-024-00973-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing