Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Direct visualization of ligands on gold nanoparticles in a liquid environment

Abstract

The interactions between gold nanoparticles, their surface ligands and the solvent critically influence the properties of these nanoparticles. Although spectroscopic and scattering techniques have been used to investigate their ensemble structure, a comprehensive understanding of these processes at the nanoscale remains challenging. Electron microscopy makes it possible to characterize the local structure and composition but is limited by insufficient contrast, electron beam sensitivity and the requirement for ultrahigh-vacuum conditions, which prevent the investigation of dynamic aspects. Here we show that, by exploiting high-quality graphene liquid cells, we can overcome these limitations and investigate the structure of the ligand shell around gold nanoparticles and at the ligand–gold interface in a liquid environment. Using this graphene liquid cell, we visualize the anisotropy, composition and dynamics of ligand distribution on gold nanorod surfaces. Our results indicate a micellar model for surfactant organization. This work provides a reliable and direct visualization of ligand distribution around colloidal nanoparticles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Comparison of TEM investigation of gold NRs capped with CTAB ligands in dried state on a graphene grid and in a liquid environment.
Fig. 2: AC-HRTEM images of different gold NRs capped with CTAB ligands in a liquid environment.
Fig. 3: Dynamic motion of a CTAB micelle in a GLC.
Fig. 4: EDX-STEM analysis of a CTAB-capped gold NR encapsulated in a graphene GLC.

Similar content being viewed by others

Data availability

All data supporting the findings of this study are included in the Article, Supplementary Information and source data files. Source data are provided with this paper.

References

  1. Sardar, R., Funston, A. M., Mulvaney, P. & Murray, R. W. Gold nanoparticles: past, present, and future. Langmuir 25, 13840–13851 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Liz-Marzán, L. M. et al. Celebrating a Nobel Prize to the ‘Discovery of quantum dots, an essential milestone in nanoscience’. ACS Nano 17, 19474–19475 (2023).

    Article  PubMed  Google Scholar 

  3. Kovalenko, M. V. et al. Prospects of nanoscience with nanocrystals. ACS Nano 9, 1012–1057 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. Boles, M. A., Ling, D., Hyeon, T. & Talapin, D. V. The surface science of nanocrystals. Nat. Mater. 15, 141–153 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Calvin, J. J., Brewer, A. S. & Alivisatos, A. P. The role of organic ligand shell structures in colloidal nanocrystal synthesis. Nat. Synth. 1, 127–137 (2022).

    Article  Google Scholar 

  6. Gómez-Graña, S. et al. Surfactant (bi)layers on gold nanorods. Langmuir 28, 1453–1459 (2012).

    Article  PubMed  Google Scholar 

  7. Hore, M. J. A. et al. Probing the structure, composition, and spatial distribution of ligands on gold nanorods. Nano Lett. 15, 5730–5738 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Seibt, S., Zhang, H., Mudie, S., Förster, S. & Mulvaney, P. Growth of gold nanorods: a SAXS study. J. Phys. Chem. C 125, 19947–19960 (2021).

    Article  CAS  Google Scholar 

  9. García, I. et al. Residual CTAB ligands as mass spectrometry labels to monitor cellular uptake of Au nanorods. J. Phys. Chem. Lett. 6, 2003–2008 (2015).

    Article  PubMed  Google Scholar 

  10. Nikoobakht, B. & El-Sayed, M. A. Evidence for bilayer assembly of cationic surfactants on the surface of gold nanorods. Langmuir 17, 6368–6374 (2001).

    Article  CAS  Google Scholar 

  11. Grzelczak, M. et al. Influence of iodide ions on the growth of gold nanorods: tuning tip curvature and surface plasmon resonance. Adv. Funct. Mater. 18, 3780–3786 (2008).

    Article  CAS  Google Scholar 

  12. Mosquera, J., Wang, D., Bals, S. & Liz-Marzán, L. M. Surfactant layers on gold nanorods. Acc. Chem. Res. 56, 1204–1212 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ong, Q., Luo, Z. & Stellacci, F. Characterization of ligand shell for mixed-ligand coated gold nanoparticles. Acc. Chem. Res. 50, 1911–1919 (2017).

    Article  CAS  PubMed  Google Scholar 

  14. Meena, S. K. & Sulpizi, M. Understanding the microscopic origin of gold nanoparticle anisotropic growth from molecular dynamics simulations. Langmuir 29, 14954–14961 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Meena, S. K. & Sulpizi, M. From gold nanoseeds to nanorods: the microscopic origin of the anisotropic growth. Angew. Chem. Int. Ed. 128, 12139–12143 (2016).

    Article  Google Scholar 

  16. Choi, M.-H. et al. Characterization of ligand adsorption at individual gold nanocubes. Langmuir 37, 7701–7711 (2021).

    Article  CAS  PubMed  Google Scholar 

  17. Kim, J.-Y. et al. Dipole-like electrostatic asymmetry of gold nanorods. Sci. Adv. 4, e1700682 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Janicek, B. E. et al. Quantitative imaging of organic ligand density on anisotropic inorganic nanocrystals. Nano Lett. 19, 6308–6314 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. Lee, Z. et al. Direct imaging of soft−hard interfaces enabled by graphene. Nano Lett. 9, 3365 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Pantelic, R. S., Meyer, J. C., Kaiser, U. & Stahlberg, H. The application of graphene as a sample support in transmission electron microscopy. Solid State Commun. 152, 1375–1382 (2012).

    Article  CAS  Google Scholar 

  21. Zhu, Y. et al. Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22, 3906–3924 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Algara-Siller, G., Kurasch, S., Sedighi, M., Lehtinen, O. & Kaiser, U. The pristine atomic structure of MoS2 monolayer protected from electron radiation damage by graphene. Appl. Phys. Lett. 103, 203107 (2013).

    Article  Google Scholar 

  23. Zan, R. et al. Control of radiation damage in MoS2 by graphene encapsulation. ACS Nano 7, 10167–10174 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Hudry, D. et al. Interface pattern engineering in core-shell upconverting nanocrystals: shedding light on critical parameters and consequences for the photoluminescence properties. Small 17, 2104441 (2021).

    Article  CAS  Google Scholar 

  25. Panthani, M. G. et al. Graphene-supported STEM imaging of Si and their capping ligands. J. Phys. Chem. C 116, 22463–22468 (2012).

    Article  CAS  Google Scholar 

  26. Nair, R. R., Blake, P., Blake, J. R., Zan, R. & Anissimova, S. Graphene as a transparent conductive support for studying biological molecules by transmission electron microscopy. Appl. Phys. Lett. 153102, 1–4 (2011).

    Google Scholar 

  27. Meyer, J. C., Girit, C. O., Crommie, M. F. & Zettl, A. Imaging and dynamics of light atoms and molecules on graphene. Nature 454, 1–9 (2008).

    Article  Google Scholar 

  28. Han, Y. et al. High-yield monolayer graphene grids for near-atomic resolution cryoelectron microscopy. Proc. Natl Acad. Sci. USA 117, 1009–1014 (2020).

    Article  CAS  PubMed  Google Scholar 

  29. Rogolino, A. et al. Metal–polymer heterojunction in colloidal-phase plasmonic catalysis. J. Phys. Chem. Lett. 13, 2264–2272 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Park, J. et al. Graphene liquid cell electron microscopy: progress, applications, and perspectives. ACS Nano 15, 288–308 (2021).

    Article  CAS  PubMed  Google Scholar 

  31. Textor, M. & de Jonge, N. Strategies for preparing graphene liquid cells for transmission electron microscopy. Nano Lett. 18, 3313–3321 (2018).

    Article  CAS  PubMed  Google Scholar 

  32. Murphy, C. J. et al. The many faces of gold nanorods. J. Phys. Chem. Lett. 1, 2867–2875 (2010).

    Article  CAS  Google Scholar 

  33. Moreau, L. M. et al. The role of trace Ag in the synthesis of Au nanorods. Nanoscale 11, 11744–11754 (2019).

    Article  CAS  PubMed  Google Scholar 

  34. Almora-Barrios, N., Novell-Leruth, G., Whiting, P., Liz-Marzán, L. M. & López, N. Theoretical description of the role of halides, silver, and surfactants on the structure of gold nanorods. Nano Lett. 14, 871–875 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. Ye, X., Zheng, C., Chen, J., Gao, Y. & Murray, C. B. Using binary surfactant mixtures to simultaneously improve the dimensional tunability and monodispersity in the seeded growth of gold nanorods. Nano Lett. 13, 765–771 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Goris, B. et al. Atomic-scale determination of surface facets in gold nanorods. Nat. Mater. 11, 930–935 (2012).

    Article  CAS  PubMed  Google Scholar 

  37. Claes, N. et al. Characterization of silver–polymer core–shell nanoparticles using electron microscopy. Nanoscale 10, 9186–9191 (2018).

    Article  CAS  PubMed  Google Scholar 

  38. Kang, J., Shin, D., Bae, S. & Hong, B. H. Graphene transfer: key for applications. Nanoscale 4, 5527–5537 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. Zhang, T. et al. Clean transfer of 2D transition metal dichalcogenides using cellulose acetate for atomic resolution characterizations. ACS Appl. Nano. Mater. 2, 5320–5328 (2019).

    Article  CAS  Google Scholar 

  40. De Meyer, R., Albrecht, W. & Bals, S. Effectiveness of reducing the influence of CTAB at the surface of metal nanoparticles during in situ heating studies by TEM. Micron 144, 103036 (2021).

    Article  PubMed  Google Scholar 

  41. Li, C. et al. A simple method to clean ligand contamination on TEM grids. Ultramicroscopy 221, 113195 (2021).

    Article  CAS  PubMed  Google Scholar 

  42. Algara-Siller, G., Lehtinen, O., Turchanin, A. & Kaiser, U. Dry-cleaning of graphene. Appl. Phys. Lett. 104, 153115 (2014).

    Article  Google Scholar 

  43. Urban, K. W. et al. Negative spherical aberration ultrahigh-resolution imaging in corrected transmission electron microscopy. Philos. Trans. R. Soc. A 367, 3735–3753 (2009).

    Article  Google Scholar 

  44. Yu, Y., Cui, F., Sun, J. & Yang, P. Atomic structure of ultrathin gold nanowires. Nano Lett. 16, 3078–3084 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. Silva, J., Dias, R., Da Hora, G., Soares, T. & Meneghetti, M.R. Molecular dynamics simulations of cetyltrimethylammonium bromide (CTAB) micelles and their interactions with a gold surface in aqueous solution. J. Braz. Chem. Soc. 29, 191–199 (2018).

    Google Scholar 

  46. Yuk, J. M. et al. High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. Science 336, 61–64 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. Dachraoui, W., Henninen, T. R., Keller, D. & Erni, R. Multi-step atomic mechanism of platinum nanocrystals nucleation and growth revealed by in situ liquid cell STEM. Sci. Rep. 11, 23965 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang, C., Shokuhfar, T. & Klie, R. F. Precise in situ modulation of local liquid chemistry via electron irradiation in nanoreactors based on graphene liquid cells. Adv. Mater. 28, 7716–7722 (2016).

    Article  CAS  PubMed  Google Scholar 

  49. Hermannsdörfer, J., Tinnemann, V., Peckys, D. B. & de Jonge, N. The effect of electron beam irradiation in environmental scanning transmission electron microscopy of whole cells in liquid. Microsc. Microanal. 22, 656–665 (2016).

    Article  PubMed  Google Scholar 

  50. Cho, H. et al. The use of graphene and its derivatives for liquid-phase transmission electron microscopy of radiation-sensitive specimens. Nano Lett. 17, 414–420 (2017).

    Article  CAS  PubMed  Google Scholar 

  51. Keskin, S. & de Jonge, N. Reduced radiation damage in transmission electron microscopy of proteins in graphene liquid cells. Nano Lett. 18, 7435–7440 (2018).

    Article  CAS  PubMed  Google Scholar 

  52. Khestanova, E., Guinea, F., Fumagalli, L., Geim, A. K. & Grigorieva, I. V. Universal shape and pressure inside bubbles appearing in van der Waals heterostructures. Nat. Commun. 7, 12587 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ghodsi, S. M. et al. Assessment of pressure and density of confined water in graphene liquid cells. Adv. Mater. Interfaces 7, 1901727 (2020).

    Article  CAS  Google Scholar 

  54. Bergström, L. M. & Grillo, I. Correlation between the geometrical shape and growth behaviour of surfactant micelles investigated with small-angle neutron scattering. Soft Matter 10, 9362–9372 (2014).

    Article  PubMed  Google Scholar 

  55. Skoglund, S. et al. A novel explanation for the enhanced colloidal stability of silver nanoparticles in the presence of an oppositely charged surfactant. Phys. Chem. Chem. Phys. 19, 28037–28043 (2017).

    Article  CAS  PubMed  Google Scholar 

  56. Yuk, J. M. et al. Graphene veils and sandwiches. Nano Lett. 11, 3290–3294 (2011).

    Article  CAS  PubMed  Google Scholar 

  57. Crook, M. F. et al. EELS studies of cerium electrolyte reveal substantial solute concentration effects in graphene liquid cells. J. Am. Chem. Soc. 145, 6648–6657 (2023).

    Article  CAS  PubMed  Google Scholar 

  58. Meena, S. K. et al. The role of halide ions in the anisotropic growth of gold nanoparticles: a microscopic, atomistic perspective. Phys. Chem. Chem. Phys. 18, 13246–13254 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kelly, D. J. et al. Nanometer resolution elemental mapping in graphene-based TEM liquid cells. Nano Lett. 18, 1168–1174 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lewis, E. A. et al. Real-time imaging and local elemental analysis of nanostructures in liquids. Chem. Commun. 50, 10019–10022 (2014).

    Article  CAS  Google Scholar 

  61. González-Rubio, G., Scarabelli, L., Guerrero-Martínez, A. & Liz-Marzán, L. M. Surfactant-assisted symmetry breaking in colloidal gold nanocrystal growth. ChemNanoMat 6, 698–707 (2020).

    Article  Google Scholar 

  62. Hubert, F., Testard, F. & Spalla, O. Cetyltrimethylammonium bromide silver bromide complex as the capping agent of gold nanorods. Langmuir 24, 9219–9222 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Pedrazo Tardajos A., Bals S., Graphene layer transfer method. European patent EP4011828A1, https://patents.google.com/patent/EP4011828A1/en?oq=EP4011828A1 (2020).

  64. Scarabelli, L., Grzelczak, M. & Liz-Marzán, L. M. Tuning gold nanorod synthesis through prereduction with salicylic acid. Chem. Mater. 25, 4232–4238 (2013).

    Article  CAS  Google Scholar 

  65. González-Rubio, G. et al. Disconnecting symmetry breaking from seeded growth for the reproducible synthesis of high quality gold nanorods. ACS Nano 13, 4424–4435 (2019).

    Article  PubMed  Google Scholar 

  66. He, Z., Qu, S. & Shang, L. Perspectives on protein–nanoparticle interactions at the in vivo level. Langmuir 40, 7781–7790 (2024).

    Article  CAS  PubMed  Google Scholar 

  67. Boscá, A., Pedrós, J., Martínez, J., Palacios, T. & Calle, F. Automatic graphene transfer system for improved material quality and efficiency. Sci. Rep. 6, 21676 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Holtz, M. E., Yu, Y., Gao, J., Abruña, H. D. & Muller, D. A. In situ electron energy-loss spectroscopy in liquids. Microsc. Microanal. 19, 1027–1103 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

S.B. and A.P.-T. acknowledge financial support from the European Commission under the Horizon 2020 Programme by grant number 731019 (EUSMI) and ERC Consolidator grant number 815128 (REALNANO). D.W. acknowledges an Individual Fellowship funded by the Marie Sklodowska-Curie Actions (MSCA) in Horizon 2020 programme (grant 894254 SuprAtom). L.M.L.-M. acknowledges financial support from the European Research Council (ERC Advanced Grant 787510, 4DbioSERS) and the Spanish State Research Agency (Project PID2020-117779RB-I00 and MDM-2017-0720). The authors acknowledge J. Mosquera and D. Jimenez de Aberasturi for provision of samples and useful discussions.

Author information

Authors and Affiliations

Authors

Contributions

A.P.-T., L.M.L.-M. and S.B. conceived the project. A.S.-I. prepared the samples and performed initial characterization. A.P.-T., N.C., D.W., P.N., K.J. and R.D.M. performed all TEM investigations and further analysis. A.P.-T., N.C., D.W., L.M.L.-M. and S.B. wrote the paper with comments from all authors.

Corresponding author

Correspondence to Sara Bals.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Taylor Woehl for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Aberration corrected high resolution TEM (AC-HRTEM) images of different graphene TEM grids.

a) Commercial graphene grid and b) the optimized home-made graphene grid. The insets show the corresponding Fourier transformations. The Fourier transformation of the commercial grid (a) demonstrates a diffuse diffraction pattern that is typical of amorphous features, whereas the Fourier transformation of the optimized graphene grid (b) shows more clear spots indicating a clean graphene lattice.

Extended Data Fig. 2 Visualization of PEG-SH capped Au NRs in different environments.

a-c) Schematic illustrations and d-f) AC-HRTEM images of a Au NRs capped with PEG-SH d) dried on a graphene grid under an ambient environment e) encapsulated in a GLC containing a relatively thick liquid layer and f) encapsulated in a GLC containing a relatively thin liquid layer.

Extended Data Fig. 3 Thickness of PEG-SH ligands layer in GLC, where thin layer of liquid was present.

a) A representative AC-HRTEM image denoting the measured areas on the tips and sides of a single SC Au NR in a thin liquid cell. b) Corresponding ligand shell thickness at tips and sides is 2.84 ± 0.10 nm and 6.65 ± 0.21 nm, respectively. Note that the histogram was plotted by measuring multiple Au NRs in the GLC.

Supplementary information

Supplementary Information

Supplementary Figs. 1–17 and Tables 1–4.

Supplementary Video 1

Video of a Au NR encapsulated in a GLC. The motion of Au NRs and the formation of bubbles are indicated by the yellow arrow and prove the presence of liquid in the GLC.

Supplementary Video 2

Video of a micellar structure next to the Au nanorod. The movement of the micellar structure in the GLC is tracked and indicated by the yellow ellipse.

Source data

Source Data Fig. 1

Data histograms.

Source Data Fig. 4

Data line profiles.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pedrazo-Tardajos, A., Claes, N., Wang, D. et al. Direct visualization of ligands on gold nanoparticles in a liquid environment. Nat. Chem. (2024). https://doi.org/10.1038/s41557-024-01574-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41557-024-01574-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing