Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mitochondria and cell death

Abstract

Mitochondria are cellular factories for energy production, calcium homeostasis and iron metabolism, but they also have an unequivocal and central role in intrinsic apoptosis through the release of cytochrome c. While the subsequent activation of proteolytic caspases ensures that cell death proceeds in the absence of collateral inflammation, other phlogistic cell death pathways have been implicated in using, or engaging, mitochondria. Here we discuss the emerging complexities of intrinsic apoptosis controlled by the BCL-2 family of proteins. We highlight the emerging theory that non-lethal mitochondrial apoptotic signalling has diverse biological roles that impact cancer, innate immunity and ageing. Finally, we delineate the role of mitochondria in other forms of cell death, such as pyroptosis, ferroptosis and necroptosis, and discuss mitochondria as central hubs for the intersection and coordination of cell death signalling pathways, underscoring their potential for therapeutic manipulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mitochondrial apoptosis.
Fig. 2: Mitochondrial permeabilization and inflammation.
Fig. 3: Mechanisms of non-lethal MOMP.
Fig. 4: Oncogenic consequences of non-lethal apoptotic stress.
Fig. 5: Mitochondria in non-apoptotic cell death.

Similar content being viewed by others

References

  1. White, M. J. et al. Apoptotic caspases suppress mtDNA-induced STING-mediated type I IFN production. Cell 159, 1549–1562 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Riley, J. S. et al. Mitochondrial inner membrane permeabilisation enables mtDNA release during apoptosis. EMBO J. 37, e99238 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Czabotar, P. E. & Garcia-Saez, A. J. Mechanisms of BCL-2 family proteins in mitochondrial apoptosis. Nat. Rev. Mol. Cell Biol. 24, 732–748 (2023).

    Article  CAS  PubMed  Google Scholar 

  4. Subburaj, Y. et al. Bax monomers form dimer units in the membrane that further self-assemble into multiple oligomeric species. Nat. Commun. 6, 8042 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Dewson, G. et al. Bax dimerizes via a symmetric BH3:groove interface during apoptosis. Cell Death Differ. 19, 661–670 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Dewson, G. et al. To trigger apoptosis, Bak exposes its BH3 domain and homodimerizes via BH3:groove interactions. Mol. Cell 30, 369–380 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Czabotar, P. E. et al. Bax crystal structures reveal how BH3 domains activate Bax and nucleate its oligomerization to induce apoptosis. Cell 152, 519–531 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Vandenabeele, P., Bultynck, G. & Savvides, S. N. Pore-forming proteins as drivers of membrane permeabilization in cell death pathways. Nat. Rev. Mol. Cell Biol. 24, 312–333 (2023).

    Article  CAS  PubMed  Google Scholar 

  9. Cowan, A. D. et al. BAK core dimers bind lipids and can be bridged by them. Nat. Struct. Mol. Biol. 27, 1024–1031 (2020).

    Article  CAS  PubMed  Google Scholar 

  10. Miller, M. S. et al. Sequence differences between BAX and BAK core domains manifest as differences in their interactions with lipids. FEBS J. https://doi.org/10.1111/febs.17031 (2023).

    Article  Google Scholar 

  11. Salvador-Gallego, R. et al. Bax assembly into rings and arcs in apoptotic mitochondria is linked to membrane pores. EMBO J. 35, 389–401 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Grosse, L. et al. Bax assembles into large ring-like structures remodeling the mitochondrial outer membrane in apoptosis. EMBO J. 35, 402–413 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cosentino, K. et al. The interplay between BAX and BAK tunes apoptotic pore growth to control mitochondrial-DNA-mediated inflammation. Mol. Cell 82, 933–949 e939 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. McArthur, K. et al. BAK/BAX macropores facilitate mitochondrial herniation and mtDNA efflux during apoptosis. Science 359, eaao6047 (2018).

    Article  PubMed  Google Scholar 

  15. Rongvaux, A. et al. Apoptotic caspases prevent the induction of type I interferons by mitochondrial DNA. Cell 159, 1563–1577 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shalaby, R., Diwan, A., Flores-Romero, H., Hertlein, V. & Garcia-Saez, A. J. Visualization of BOK pores independent of BAX and BAK reveals a similar mechanism with differing regulation. Cell Death Differ. 30, 731–741 (2023).

    Article  CAS  PubMed  Google Scholar 

  17. Llambi, F. et al. BOK is a non-canonical BCL-2 family effector of apoptosis regulated by ER-associated degradation. Cell 165, 421–433 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Flores-Romero, H. et al. BCL-2-family protein tBID can act as a BAX-like effector of apoptosis. EMBO J. 41, e108690 (2022).

    Article  CAS  PubMed  Google Scholar 

  19. Ke, F. S. et al. The BCL-2 family member BID plays a role during embryonic development in addition to its BH3-only protein function by acting in parallel to BAX, BAK and BOK. EMBO J. 41, e110300 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Diepstraten, S. T. et al. The manipulation of apoptosis for cancer therapy using BH3-mimetic drugs. Nat. Rev. Cancer 22, 45–64 (2022).

    Article  CAS  PubMed  Google Scholar 

  21. Gitego, N. et al. Chemical modulation of cytosolic BAX homodimer potentiates BAX activation and apoptosis. Nat. Commun. 14, 8381 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li, K., van Delft, M. F. & Dewson, G. Too much death can kill you: inhibiting intrinsic apoptosis to treat disease. EMBO J. 40, e107341 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Victorelli, S. et al. Apoptotic stress causes mtDNA release during senescence and drives the SASP. Nature 622, 627–636 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kale, J., Osterlund, E. J. & Andrews, D. W. BCL-2 family proteins: changing partners in the dance towards death. Cell Death Differ. 25, 65–80 (2018).

    Article  CAS  PubMed  Google Scholar 

  25. Li, P. et al. SUMO modification in apoptosis. J. Mol. Histol. 52, 1–10 (2021).

    Article  PubMed  Google Scholar 

  26. Phu, L. et al. Dynamic regulation of mitochondrial import by the ubiquitin system. Mol. Cell 77, 1107–1123.e10 (2020).

    Article  CAS  PubMed  Google Scholar 

  27. Djajawi, T. M. et al. MARCH5 requires MTCH2 to coordinate proteasomal turnover of the MCL1:NOXA complex. Cell Death Differ. 27, 2484–2499 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Subramanian, A., Andronache, A., Li, Y. C. & Wade, M. Inhibition of MARCH5 ubiquitin ligase abrogates MCL1-dependent resistance to BH3 mimetics via NOXA. Oncotarget 7, 15986–16002 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Haschka, M. D. et al. MARCH5-dependent degradation of MCL1/NOXA complexes defines susceptibility to antimitotic drug treatment. Cell Death Differ. 27, 2297–2312 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Huang, A. S. et al. Mitochondrial E3 ubiquitin ligase MARCHF5 controls BAK apoptotic activity independently of BH3-only proteins. Cell Death Differ. 30, 632–646 (2023).

    Article  CAS  PubMed  Google Scholar 

  31. Narendra, D., Tanaka, A., Suen, D. F. & Youle, R. J. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J. Cell Biol. 183, 795–803 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gladkova, C., Maslen, S. L., Skehel, J. M. & Komander, D. Mechanism of Parkin activation by PINK1. Nature 559, 410–414 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Carroll, R. G., Hollville, E. & Martin, S. J. Parkin sensitizes toward apoptosis induced by mitochondrial depolarization through promoting degradation of Mcl-1. Cell Rep. 9, 1538–1553 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. Zhang, C. et al. PINK1 triggers autocatalytic activation of Parkin to specify cell fate decisions. Curr. Biol. 24, 1854–1865 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Johnson, B. N., Berger, A. K., Cortese, G. P. & Lavoie, M. J. The ubiquitin E3 ligase parkin regulates the proapoptotic function of Bax. Proc. Natl Acad. Sci. USA 109, 6283–6288 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Charan, R. A., Johnson, B. N., Zaganelli, S., Nardozzi, J. D. & LaVoie, M. J. Inhibition of apoptotic Bax translocation to the mitochondria is a central function of Parkin. Cell Death Dis. 5, e1313 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bernardini, J. P. et al. Parkin inhibits BAK and BAX apoptotic function by distinct mechanisms during mitophagy. EMBO J. 38, e99916 (2019).

    Article  PubMed  Google Scholar 

  38. Baines, C. P., Kaiser, R. A., Sheiko, T., Craigen, W. J. & Molkentin, J. D. Voltage-dependent anion channels are dispensable for mitochondrial-dependent cell death. Nat. Cell Biol. 9, 550–555 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cheng, E. H., Sheiko, T. V., Fisher, J. K., Craigen, W. J. & Korsmeyer, S. J. VDAC2 inhibits BAK activation and mitochondrial apoptosis. Science 301, 513–517 (2003).

    Article  CAS  PubMed  Google Scholar��

  40. Ren, D. et al. The VDAC2–BAK rheostat controls thymocyte survival. Sci. Signal 2, ra48 (2009).

    Article  PubMed  Google Scholar 

  41. Ma, S. B. et al. Bax targets mitochondria by distinct mechanisms before or during apoptotic cell death: a requirement for VDAC2 or Bak for efficient Bax apoptotic function. Cell Death Differ. 21, 1925–1935 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Roy, S. S., Ehrlich, A. M., Craigen, W. J. & Hajnoczky, G. VDAC2 is required for truncated BID-induced mitochondrial apoptosis by recruiting BAK to the mitochondria. EMBO Rep. 10, 1341–1347 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hosoi, K. I. et al. The VDAC2–BAK axis regulates peroxisomal membrane permeability. J. Cell Biol. 216, 709–722 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chin, H. S. et al. VDAC2 enables BAX to mediate apoptosis and limit tumor development. Nat. Commun. 9, 4976 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Yuan, Z., Dewson, G., Czabotar, P. E. & Birkinshaw, R. W. VDAC2 and the BCL-2 family of proteins. Biochem. Soc. Trans. 49, 2787–2795 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Van Delft, M. F. et al. A small molecule interacts with VDAC2 to block mouse BAK-driven apoptosis. Nat. Chem. Biol. 15, 1057–1066 (2019).

    Article  PubMed  Google Scholar 

  47. Guna, A. et al. MTCH2 is a mitochondrial outer membrane protein insertase. Science 378, 317–322 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zaltsman, Y. et al. MTCH2/MIMP is a major facilitator of tBID recruitment to mitochondria. Nat. Cell Biol. 12, 553–562 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Delivani, P., Adrain, C., Taylor, R. C., Duriez, P. J. & Martin, S. J. Role for CED-9 and Egl-1 as regulators of mitochondrial fission and fusion dynamics. Mol. Cell 21, 761–773 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Brooks, C. et al. Bak regulates mitochondrial morphology and pathology during apoptosis by interacting with mitofusins. Proc. Natl Acad. Sci. USA 104, 11649–11654 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jenner, A. et al. DRP1 interacts directly with BAX to induce its activation and apoptosis. EMBO J. 41, e108587 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hoppins, S. et al. The soluble form of Bax regulates mitochondrial fusion via MFN2 homotypic complexes. Mol. Cell 41, 150–160 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lartigue, L. et al. Caspase-independent mitochondrial cell death results from loss of respiration, not cytotoxic protein release. Mol. Biol. Cell 20, 4871–4884 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yoshida, H. et al. Apaf1 is required for mitochondrial pathways of apoptosis and brain development. Cell 94, 739–750 (1998).

    Article  CAS  PubMed  Google Scholar 

  55. Hakem, R. et al. Differential requirement for caspase 9 in apoptotic pathways in vivo. Cell 94, 339–352 (1998).

    Article  CAS  PubMed  Google Scholar 

  56. Nonomura, K. et al. Local apoptosis modulates early mammalian brain development through the elimination of morphogen-producing cells. Dev. Cell 27, 621–634 (2013).

    Article  CAS  PubMed  Google Scholar 

  57. Giampazolias, E. et al. Mitochondrial permeabilization engages NF-κB-dependent anti-tumour activity under caspase deficiency. Nat. Cell Biol. 19, 1116–1129 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Killarney, S. T. et al. Executioner caspases restrict mitochondrial RNA-driven type I IFN induction during chemotherapy-induced apoptosis. Nat. Commun. 14, 1399 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Dhir, A. et al. Mitochondrial double-stranded RNA triggers antiviral signalling in humans. Nature 560, 238–242 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Harding, O., Holzer, E., Riley, J. F., Martens, S. & Holzbaur, E. L. F. Damaged mitochondria recruit the effector NEMO to activate NF-κB signaling. Mol. Cell 83, 3188–3204.e7 (2023).

    Article  CAS  PubMed  Google Scholar 

  61. Wu, Z. et al. LUBAC assembles a ubiquitin signaling platform at mitochondria for signal amplification and transport of NF-κB to the nucleus. EMBO J. 41, e112006 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Vringer, E. et al. Mitochondrial outer membrane integrity regulates a ubiquitin-dependent and NF-κB-mediated inflammatory response. EMBO J. 43, 904–930 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Saunders, T. L. et al. Exposure of the inner mitochondrial membrane triggers apoptotic mitophagy. Cell Death Differ. 31, 335–347 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Van Wijk, S. J. L. et al. Linear ubiquitination of cytosolic Salmonella Typhimurium activates NF-κB and restricts bacterial proliferation. Nat. Microbiol. 2, 17066 (2017).

    Article  PubMed  Google Scholar 

  65. Noad, J. et al. LUBAC-synthesized linear ubiquitin chains restrict cytosol-invading bacteria by activating autophagy and NF-κB. Nat. Microbiol. 2, 17063 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Han, C. et al. Tumor cells suppress radiation-induced immunity by hijacking caspase 9 signaling. Nat. Immunol. 21, 546–554 (2020).

    Article  CAS  PubMed  Google Scholar 

  67. Ning, X. et al. Apoptotic caspases suppress type I interferon production via the cleavage of cGAS, MAVS, and IRF3. Mol. Cell 74, 19–31.e7 (2019).

    Article  CAS  PubMed  Google Scholar 

  68. McIlwain, D. R., Berger, T. & Mak, T. W. Caspase functions in cell death and disease. Cold Spring Harb. Perspect. Biol. 5, a008656 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Morioka, S., Maueroder, C. & Ravichandran, K. S. Living on the edge: efferocytosis at the interface of homeostasis and pathology. Immunity 50, 1149–1162 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Van Delft, M. F., Smith, D. P., Lahoud, M. H., Huang, D. C. & Adams, J. M. Apoptosis and non-inflammatory phagocytosis can be induced by mitochondrial damage without caspases. Cell Death Differ. 17, 821–832 (2010).

    Article  PubMed  Google Scholar 

  71. Lindqvist, L. M. et al. Autophagy induced during apoptosis degrades mitochondria and inhibits type I interferon secretion. Cell Death Differ. 25, 784–796 (2018).

    Article  PubMed  Google Scholar 

  72. Colell, A. et al. GAPDH and autophagy preserve survival after apoptotic cytochrome c release in the absence of caspase activation. Cell 129, 983–997 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. Yamazaki, T. et al. Mitochondrial DNA drives abscopal responses to radiation that are inhibited by autophagy. Nat. Immunol. 21, 1160–1171 (2020).

    Article  CAS  PubMed  Google Scholar 

  74. Ichim, G. et al. Limited mitochondrial permeabilization causes DNA damage and genomic instability in the absence of cell death. Mol. Cell 57, 860–872 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Certo, M. et al. Mitochondria primed by death signals determine cellular addiction to antiapoptotic BCL-2 family members. Cancer Cell 9, 351–365 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Cao, K. et al. Mitochondrial dynamics regulate genome stability via control of caspase-dependent DNA damage. Dev. Cell 57, 1211–1225.e6 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Jiang, X., Jiang, H., Shen, Z. & Wang, X. Activation of mitochondrial protease OMA1 by Bax and Bak promotes cytochrome c release during apoptosis. Proc. Natl Acad. Sci. USA 111, 14782–14787 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Tang, H. L. et al. Cell survival, DNA damage, and oncogenic transformation after a transient and reversible apoptotic response. Mol. Biol. Cell 23, 2240–2252 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sun, G. et al. A molecular signature for anastasis, recovery from the brink of apoptotic cell death. J. Cell Biol. 216, 3355–3368 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wang, R. et al. Anastasis enhances metastasis and chemoresistance of colorectal cancer cells through upregulating cIAP2/NFκB signaling. Cell Death Dis. 14, 388 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Nano, M., Mondo, J. A., Harwood, J., Balasanyan, V. & Montell, D. J. Cell survival following direct executioner-caspase activation. Proc. Natl Acad. Sci. USA 120, e2216531120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ichim, G. & Tait, S. W. A fate worse than death: apoptosis as an oncogenic process. Nat. Rev. Cancer 16, 539–548 (2016).

    Article  CAS  PubMed  Google Scholar 

  83. Lovric, M. M. & Hawkins, C. J. TRAIL treatment provokes mutations in surviving cells. Oncogene 29, 5048–5060 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Liu, X. et al. Caspase-3 promotes genetic instability and carcinogenesis. Mol. Cell 58, 284–296 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Berthenet, K. et al. Failed apoptosis enhances melanoma cancer cell aggressiveness. Cell Rep. 31, 107731 (2020).

    Article  CAS  PubMed  Google Scholar 

  86. Haimovici, A. et al. Spontaneous activity of the mitochondrial apoptosis pathway drives chromosomal defects, the appearance of micronuclei and cancer metastasis through the caspase-activated DNAse. Cell Death Dis. 13, 315 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ali, M. et al. Small-molecule targeted therapies induce dependence on DNA double-strand break repair in residual tumor cells. Sci. Transl. Med. 14, eabc7480 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Shen, S., Vagner, S. & Robert, C. Persistent cancer cells: the deadly survivors. Cell 183, 860–874 (2020).

    Article  CAS  PubMed  Google Scholar 

  89. Kalkavan, H. et al. Sublethal cytochrome c release generates drug-tolerant persister cells. Cell 185, 3356–3374.e22 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Costa-Mattioli, M. & Walter, P. The integrated stress response: from mechanism to disease. Science 368, eaat5314 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Hangauer, M. J. et al. Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition. Nature 551, 247–250 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Borowski, L. S., Dziembowski, A., Hejnowicz, M. S., Stepien, P. P. & Szczesny, R. J. Human mitochondrial RNA decay mediated by PNPase–hSuv3 complex takes place in distinct foci. Nucleic Acids Res. 41, 1223–1240 (2013).

    Article  CAS  PubMed  Google Scholar 

  93. Tigano, M., Vargas, D. C., Tremblay-Belzile, S., Fu, Y. & Sfeir, A. Nuclear sensing of breaks in mitochondrial DNA enhances immune surveillance. Nature 591, 477–481 (2021).

    Article  CAS  PubMed  Google Scholar 

  94. Xia, T., Konno, H. & Barber, G. N. Recurrent loss of STING signaling in melanoma correlates with susceptibility to viral oncolysis. Cancer Res. 76, 6747–6759 (2016).

    Article  CAS  PubMed  Google Scholar 

  95. Xia, T., Konno, H., Ahn, J. & Barber, G. N. Deregulation of STING signaling in colorectal carcinoma constrains DNA damage responses and correlates with tumorigenesis. Cell Rep. 14, 282–297 (2016).

    Article  CAS  PubMed  Google Scholar 

  96. Brokatzky, D. et al. A non-death function of the mitochondrial apoptosis apparatus in immunity. EMBO J. 38, e100907 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Dorflinger, B. et al. Mitochondria supply sub-lethal signals for cytokine secretion and DNA-damage in H. pylori infection. Cell Death Differ. 29, 2218–2232 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Andree, M. et al. BID-dependent release of mitochondrial SMAC dampens XIAP-mediated immunity against Shigella. EMBO J. 33, 2171–2187 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Song, J. H., Kandasamy, K., Zemskova, M., Lin, Y. W. & Kraft, A. S. The BH3 mimetic ABT-737 induces cancer cell senescence. Cancer Res. 71, 506–515 (2011).

    Article  CAS  PubMed  Google Scholar 

  100. Orth, J. D., Loewer, A., Lahav, G. & Mitchison, T. J. Prolonged mitotic arrest triggers partial activation of apoptosis, resulting in DNA damage and p53 induction. Mol. Biol. Cell 23, 567–576 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Birch, J. & Gil, J. Senescence and the SASP: many therapeutic avenues. Genes Dev. 34, 1565–1576 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Shahbandi, A. et al. BH3 mimetics selectively eliminate chemotherapy-induced senescent cells and improve response in TP53 wild-type breast cancer. Cell Death Differ. 27, 3097–3116 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Yosef, R. et al. Directed elimination of senescent cells by inhibition of BCL-W and BCL-XL. Nat. Commun. 7, 11190 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Dou, Z. et al. Cytoplasmic chromatin triggers inflammation in senescence and cancer. Nature 550, 402–406 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Bergsbaken, T., Fink, S. L. & Cookson, B. T. Pyroptosis: host cell death and inflammation. Nat. Rev. Microbiol. 7, 99–109 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Shi, J. et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526, 660–665 (2015).

    Article  CAS  PubMed  Google Scholar 

  107. Kayagaki, N. et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 526, 666–671 (2015).

    Article  CAS  PubMed  Google Scholar 

  108. Xia, S. et al. Gasdermin D pore structure reveals preferential release of mature interleukin-1. Nature 593, 607–611 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Liu, X. et al. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature 535, 153–158 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Zhou, B. & Abbott, D. W. Gasdermin E permits interleukin-1 beta release in distinct sublytic and pyroptotic phases. Cell Rep. 35, 108998 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Kayagaki, N. et al. NINJ1 mediates plasma membrane rupture during lytic cell death. Nature 591, 131–136 (2021).

    Article  CAS  PubMed  Google Scholar 

  112. Rogers, C. et al. Cleavage of DFNA5 by caspase-3 during apoptosis mediates progression to secondary necrotic/pyroptotic cell death. Nat. Commun. 8, 14128 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Wang, Y. et al. Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. Nature 547, 99–103 (2017).

    Article  CAS  PubMed  Google Scholar 

  114. Platnich, J. M. et al. Shiga toxin/lipopolysaccharide activates caspase-4 and gasdermin D to trigger mitochondrial reactive oxygen species upstream of the NLRP3 inflammasome. Cell Rep. 25, 1525–1536.e7 (2018).

    Article  CAS  PubMed  Google Scholar 

  115. Miao, R. et al. Gasdermin D permeabilization of mitochondrial inner and outer membranes accelerates and enhances pyroptosis. Immunity 56, 2523–2541.e8 (2023).

    Article  CAS  PubMed  Google Scholar 

  116. De Torre-Minguela, C., Gomez, A. I., Couillin, I. & Pelegrin, P. Gasdermins mediate cellular release of mitochondrial DNA during pyroptosis and apoptosis. FASEB J. 35, e21757 (2021).

    Article  PubMed  Google Scholar 

  117. Kondolf, H. C., D’Orlando, D. A., Dubyak, G. R. & Abbott, D. W. Protein engineering reveals that gasdermin A preferentially targets mitochondrial membranes over the plasma membrane during pyroptosis. J. Biol. Chem. 299, 102908 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Weindel, C. G. et al. Mitochondrial ROS promotes susceptibility to infection via gasdermin D-mediated necroptosis. Cell 185, 3214–3231.e23 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Rogers, C. et al. Gasdermin pores permeabilize mitochondria to augment caspase-3 activation during apoptosis and inflammasome activation. Nat. Commun. 10, 1689 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Orzalli, M. H. et al. Virus-mediated inactivation of anti-apoptotic Bcl-2 family members promotes gasdermin-E-dependent pyroptosis in barrier epithelial cells. Immunity 54, 1447–1462 e1445 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Vince, J. E. et al. The mitochondrial apoptotic effectors BAX/BAK activate caspase-3 and -7 to trigger NLRP3 inflammasome and caspase-8 driven IL-1β activation. Cell Rep. 25, 2339–2353.e4 (2018).

    Article  CAS  PubMed  Google Scholar 

  122. Chauhan, D. et al. BAX/BAK-induced apoptosis results in caspase-8-dependent IL-1β maturation in macrophages. Cell Rep. 25, 2354–2368.e5 (2018).

    Article  CAS  PubMed  Google Scholar 

  123. Van Laer, L. et al. Nonsyndromic hearing impairment is associated with a mutation in DFNA5. Nat. Genet. 20, 194–197 (1998).

    Article  PubMed  Google Scholar 

  124. Neel, D. V. et al. Gasdermin-E mediates mitochondrial damage in axons and neurodegeneration. Neuron 111, 1222–1240.e9 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. He, S. et al. Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-α. Cell 137, 1100–1111 (2009).

    Article  CAS  PubMed  Google Scholar 

  126. Hildebrand, J. M. et al. Activation of the pseudokinase MLKL unleashes the four-helix bundle domain to induce membrane localization and necroptotic cell death. Proc. Natl Acad. Sci. USA 111, 15072–15077 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Petrie, E. J. et al. Conformational switching of the pseudokinase domain promotes human MLKL tetramerization and cell death by necroptosis. Nat. Commun. 9, 2422 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Wang, H. et al. Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3. Mol. Cell 54, 133–146 (2014).

    Article  CAS  PubMed  Google Scholar 

  129. Wang, Z., Jiang, H., Chen, S., Du, F. & Wang, X. The mitochondrial phosphatase PGAM5 functions at the convergence point of multiple necrotic death pathways. Cell 148, 228–243 (2012).

    Article  CAS  PubMed  Google Scholar 

  130. Karch, J. et al. Necroptosis interfaces with MOMP and the MPTP in mediating cell death. PLoS ONE 10, e0130520 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Remijsen, Q. et al. Depletion of RIPK3 or MLKL blocks TNF-driven necroptosis and switches towards a delayed RIPK1 kinase-dependent apoptosis. Cell Death Dis. 5, e1004 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Moujalled, D. et al. The necroptotic cell death pathway operates in megakaryocytes, but not in platelet synthesis. Cell Death Dis. 12, 133 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Murphy, J. M. et al. The pseudokinase MLKL mediates necroptosis via a molecular switch mechanism. Immunity 39, 443–453 (2013).

    Article  CAS  PubMed  Google Scholar 

  134. Tait, S. W. et al. Widespread mitochondrial depletion via mitophagy does not compromise necroptosis. Cell Rep. 5, 878–885 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Ardestani, S., Deskins, D. L. & Young, P. P. Membrane TNF-alpha-activated programmed necrosis is mediated by Ceramide-induced reactive oxygen species. J. Mol. Signal. 8, 12 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Deragon, M. A. et al. Mitochondrial ROS prime the hyperglycemic shift from apoptosis to necroptosis. Cell Death Discov. 6, 132 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Yang, Z. et al. RIP3 targets pyruvate dehydrogenase complex to increase aerobic respiration in TNF-induced necroptosis. Nat. Cell Biol. 20, 186–197 (2018).

    Article  CAS  PubMed  Google Scholar 

  138. Temkin, V., Huang, Q., Liu, H., Osada, H. & Pope, R. M. Inhibition of ADP/ATP exchange in receptor-interacting protein-mediated necrosis. Mol. Cell. Biol. 26, 2215–2225 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Davis, C. W. et al. Nitration of the mitochondrial complex I subunit NDUFB8 elicits RIP1- and RIP3-mediated necrosis. Free Radic. Biol. Med. 48, 306–317 (2010).

    Article  CAS  PubMed  Google Scholar 

  140. Irrinki, K. M. et al. Requirement of FADD, NEMO, and BAX/BAK for aberrant mitochondrial function in tumor necrosis factor alpha-induced necrosis. Mol. Cell. Biol. 31, 3745–3758 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Rohde, K. et al. A Bak-dependent mitochondrial amplification step contributes to Smac mimetic/glucocorticoid-induced necroptosis. Cell Death Differ. 24, 83–97 (2017).

    Article  CAS  PubMed  Google Scholar 

  142. Roca, F. J. & Ramakrishnan, L. TNF dually mediates resistance and susceptibility to mycobacteria via mitochondrial reactive oxygen species. Cell 153, 521–534 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Oberst, A. et al. Catalytic activity of the caspase-8–FLIPL complex inhibits RIPK3-dependent necrosis. Nature 471, 363–367 (2011).

  144. Dixon, S. J. et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149, 1060–1072 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Gan, B. Mitochondrial regulation of ferroptosis. J. Cell Biol. 220, e202105043 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Friedmann Angeli, J. P. et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat. Cell Biol. 16, 1180–1191 (2014).

    Article  CAS  PubMed  Google Scholar 

  147. Gao, M. et al. Role of mitochondria in ferroptosis. Mol. Cell 73, 354–363.e3 (2019).

    Article  CAS  PubMed  Google Scholar 

  148. Jelinek, A. et al. Mitochondrial rescue prevents glutathione peroxidase-dependent ferroptosis. Free Radic. Biol. Med. 117, 45–57 (2018).

    Article  CAS  PubMed  Google Scholar 

  149. Newton, K. et al. Activity of caspase-8 determines plasticity between cell death pathways. Nature 575, 679–682 (2019).

    Article  CAS  PubMed  Google Scholar 

  150. Doerflinger, M. et al. Flexible usage and interconnectivity of diverse cell death pathways protect against intracellular infection. Immunity 53, 533–547.e7 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We apologize to the authors whose work we were unable to cite and discuss due to word and reference limits. H.L.G. and S.W.G.T. are supported by funding from Cancer Research UK (DRCNPG-Jun22\100011). A.S. is supported by a scholarship from the University of Melbourne (MIRS and MIFRS). G.D. is supported through a fellowship from the Bodhi Education Fund. We thank S. Masaldan, A. Samson, T. Saunders and J. Vince for discussions, comments and suggestions.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the conceptualization, writing and editing of the manuscript. H.L.G., A.S. and G.D. generated and edited the figures.

Corresponding authors

Correspondence to Grant Dewson or Stephen W. G. Tait.

Ethics declarations

Competing interests

S.T. consults for Exo Therapeutics. A.S. and G.D. are employees of the Walter and Eliza Hall Institute, which receives royalty payments relating to the use of Venclexta (venetoclax).

Peer review

Peer review information

Nature Cell Biology thanks Ana García-Sáez and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glover, H.L., Schreiner, A., Dewson, G. et al. Mitochondria and cell death. Nat Cell Biol (2024). https://doi.org/10.1038/s41556-024-01429-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41556-024-01429-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing