Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cenozoic seeds of Vitaceae reveal a deep history of extinction and dispersal in the Neotropics

Abstract

The remarkably diverse plant communities of the Neotropics are the result of diversification driven by multiple biotic (for example, speciation, extinction and dispersal) and abiotic (for example, climatic and tectonic) processes. However, in the absence of a well-preserved, thoroughly sampled and critically assessed fossil record, the associated processes of dispersal and extinction are poorly understood. We report an exceptional case study documenting patterns of extinction in the grape family (Vitaceae Juss.) on the basis of fossil seeds discovered in four Neotropical palaeofloras dated between 60 and 19 Ma. These include a new species that provides the earliest evidence of Vitaceae in the Western Hemisphere. Eight additional species reveal the former presence of major clades of the family that are currently absent from the Neotropics and elucidate previously unknown dispersal events. Our results indicate that regional extinction and dispersal have substantially impacted the evolutionary history of Vitaceae in the Neotropics. They also suggest that while the Neotropics have been dynamic centres of diversification through the Cenozoic, extant Neotropical botanical diversity has also been shaped by extensive extinction over the past 66 million years.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Vitaceae fossil seeds.
Fig. 2: Reconstruction of Vitaceae seeds from Neotropical Palaeocene to Miocene forests.
Fig. 3: Historical biogeography of four clades of Vitaceae.

Similar content being viewed by others

Data availability

All study data are included in the Article and/or its Supplementary Information. The original CT scan datasets are archived at https://www.morphosource.org/projects/000515707/temporary_link/qNRRT59boFcNbfWqpXGXV2K6?locale=en. NCBI accession numbers for phylogenetic and biogeographic analyses are available in Supplementary Information, Dataset 1.

References

  1. Raven, P. H. et al. The distribution of biodiversity richness in the tropics. Sci. Adv. 6, eabc6228 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Carvalho, M. R. et al. Extinction at the end-Cretaceous and the origin of modern tropical rainforests. Science 372, 63–68 (2021).

    Article  CAS  PubMed  Google Scholar 

  3. Antonelli, A. The rise and fall of Neotropical biodiversity. Bot. J. Linn. Soc. 199, 8–25 (2022).

    Article  Google Scholar 

  4. Hughes, C. E., Pennington, R. T. & Antonelli, A. Neotropical plant evolution: assembling the big picture. Bot. J. Linn. Soc. 171, 1–18 (2013).

    Article  Google Scholar 

  5. Rull, V. Neotropical biodiversity: timing and potential drivers. Trends Ecol. Evol. 26, 508–513 (2011).

    Article  PubMed  Google Scholar 

  6. Antonelli, A. & Sanmartín, I. Why are there so many plant species in the Neotropics? Taxon 60, 403–414 (2011).

    Article  Google Scholar 

  7. Palma-Silva, C. et al. Drivers of exceptional Neotropical biodiversity: an updated view. Bot. J. Linn. Soc. 199, 1–7 (2022).

    Article  Google Scholar 

  8. Jaramillo, C. A. The evolution of extant South American tropical biomes. New Phytol. 239, 477–493 (2023).

    Article  PubMed  Google Scholar 

  9. Hoorn, C. et al. Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science 330, 927–931 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Antonelli, A. et al. Conceptual and empirical advances in Neotropical biodiversity research. PeerJ 6, e5644 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Meseguer, A. S. et al. Diversification dynamics in the Neotropics through time, clades, and biogeographic regions. eLife 11, e74503 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wen, J. et al. A new phylogenetic tribal classification of the grape family (Vitaceae). J. Syst. Evol. 56, 262–272 (2018).

    Article  Google Scholar 

  13. Adams, N. F. et al. X-rays and virtual taphonomy resolve the first Cissus (Vitaceae) macrofossils from Africa as early-diverging members of the genus. Am. J. Bot. 103, 1657–1677 (2016).

    Article  PubMed  Google Scholar 

  14. Chu, Z. F. et al. Genome size variation and evolution in the grape family Vitaceae. J. Syst. Evol. 56, 273–282 (2018).

    Article  Google Scholar 

  15. Dong, Y. et al. Dual domestications and origin of traits in grapevine evolution. Science 379, 892–901 (2023).

    Article  CAS  PubMed  Google Scholar 

  16. Gomes-Rodrigues, J., Lombardi, J. A. & Lovato, M. B. Phylogeny of Cissus (Vitaceae) focusing on South American species. Taxon 63, 287–298 (2014).

    Article  Google Scholar 

  17. Jackes, B. R. & Trias-Blasi, A. Apocissus Jackes & Trias-Blasi, a new genus in the Vitaceae. Austrobaileya 13, 94–104 (2023).

    Google Scholar 

  18. Liu, X. Q. et al. Phylogeny of the Ampelocissus-Vitis clade in Vitaceae supports the New World origin of the grape genus. Mol. Phylogenet. Evol. 95, 217–228 (2016).

    Article  PubMed  Google Scholar 

  19. Liu, X. Q. et al. Molecular phylogeny of Cissus L. of Vitaceae (the grape family) and evolution of its pantropical intercontinental disjunctions. Mol. Phylogenet. Evol. 66, 43–53 (2013).

    Article  PubMed  Google Scholar 

  20. Lu, L. et al. Optimal data partitioning, multispecies coalescent and Bayesian concordance analyses resolve early divergences of the grape family (Vitaceae). Cladistics 34, 57–77 (2018).

    Article  PubMed  Google Scholar 

  21. Ma, Z. Y. et al. Phylogenomic relationships and character evolution of the grape family (Vitaceae). Mol. Phylogenet. Evol. 154, 106948 (2021).

    Article  PubMed  Google Scholar 

  22. Molina, J. E., Wen, J. & Struwe, L. Systematics and biogeography of the non-viny grape relative Leea (Vitaceae). Bot. J. Linn. Soc. 171, 354–376 (2013).

    Article  Google Scholar 

  23. Nie, Z. L. et al. Evolution of the intercontinental disjunctions in six continents in the Ampelopsis clade of the grape family (Vitaceae). BMC Evol. Biol. 12, 17 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Parmar, G. et al. Phylogeny, character evolution and taxonomic revision of Causonis, a segregate genus from Cayratia (Vitaceae). Taxon 70, 1188–1218 (2021).

    Article  Google Scholar 

  25. Peng, D.-X. et al. Historical biogeography of Tetrastigma (Vitaceae): insights into floristic exchange patterns between Asia and Australia. Cladistics 37, 803–815 (2021).

    Article  PubMed  Google Scholar 

  26. Rabarijaona, R. N. et al. Phylogeny and taxonomy of Afrocayratia, a new genus of Vitaceae from continental Africa and Madagascar. J. Syst. Evol. 58, 1090–1107 (2020).

    Article  Google Scholar 

  27. Rabarijaona, R. N. et al. Species delimitation and biogeography of Cyphostemma (Vitaceae), emphasizing diversification and ecological adaptation in Madagascar. Taxon 72, 766–790 (2023).

    Article  Google Scholar 

  28. Wen, J. et al. Pseudocayratia, a new genus of Vitaceae from China and Japan with two new species and three new combinations. J. Syst. Evol. 56, 374–393 (2018).

    Article  Google Scholar 

  29. Wen, J., Boggan, J. & Nie, Z. L. Synopsis of Nekemias Raf., a segregate genus from Ampelopsis Michx. (Vitaceae) disjunct between eastern/southeastern Asia and eastern North America, with ten new combinations. PhytoKeys 42, 11–19 (2014).

    Article  Google Scholar 

  30. Zhang, N., Wen, J. & Zimmer, E. A. Another look at the phylogenetic position of the grape order Vitales: chloroplast phylogenomics with an expanded sampling of key lineages. Mol. Phylogenet. Evol. 101, 216–223 (2016).

    Article  CAS  PubMed  Google Scholar 

  31. Angiosperm Phylogeny Group (APG IV). An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot. J. Linn. Soc. 181, 1–20 (2016).

    Article  Google Scholar 

  32. Wen, J. in The Families and Genera of Vascular Plants Vol. 9 (ed. Kubitzki, K.) 221–225 (Springer, 2007).

  33. Wen, J. in The Families and Genera of Vascular Plants Vol. 9 (ed. Kubitzki, K.) 467–479 (Springer, 2007).

  34. Manchester, S. R., Kapgate, D. K. & Wen, J. Oldest fruits of the grape family (Vitaceae) from the Late Cretaceous Deccan cherts of India. Am. J. Bot. 100, 1849–1859 (2013).

    Article  PubMed  Google Scholar 

  35. Soltis, D. E. et al. Angiosperm phylogeny: 17 genes, 640 taxa. Am. J. Bot. 98, 704–730 (2011).

    Article  PubMed  Google Scholar 

  36. Sun, M. et al. Recent accelerated diversification in rosids occurred outside the tropics. Nat. Commun. 11, 3333 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gentry, A. H. A Field Guide to the Families and Genera of Woody Plants of Northwest South America (Colombia, Ecuador, Peru), with Supplementary Notes on Herbaceous Taxa (Univ. Chicago Press, 1996).

  38. Lombardi, J. A. Vitaceae – Gêneros Ampelocissus, Ampelopsis e Cissus Flora Neotropica Monograph 80 (New York Botanical Garden, 2000).

  39. Lombardi, J. A. Systematics of Vitaceae in South America. Botany 85, 712–721 (2007).

    Google Scholar 

  40. Lombardi, J. A. New combinations for the South American Cissus striata clade (Vitaceae). Phytotaxa 227, 295–298 (2015).

    Article  Google Scholar 

  41. Chen, I. & Manchester, S. R. Seed morphology of modern and fossil Ampelocissus (Vitaceae) and implications for phytogeography. Am. J. Bot. 94, 1534–1553 (2007).

    Article  PubMed  Google Scholar 

  42. Collinson, M. E. et al. Fossil fruits and seeds of the Middle Eocene Messel biota, Germany. Abh. Senckenb. Ges. Naturforsch. 570, 1–251 (2012).

    Google Scholar 

  43. Su, T. et al. A Middle Eocene lowland humid subtropical ‘Shangri-La’ ecosystem in central Tibet. Proc. Natl Acad. Sci. USA 117, 32989–32995 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Herrera, F., Manchester, S. R. & Jaramillo, C. Permineralized fruits from the late Eocene of Panama give clues of the composition of forests established early in the uplift of Central America. Rev. Palaeobot. Palynol. 175, 10–24 (2012).

    Article  Google Scholar 

  45. Herrera et al. Phytogeographic history and phylogeny of the Humiriaceae. Int. J. Plant. Sci. 171, 392–408 (2010).

    Article  Google Scholar 

  46. Chen, I. & Manchester, S. R. Seed morphology of Vitaceae. Int. J. Plant Sci. 172, 1–35 (2011).

    Article  Google Scholar 

  47. Berry, E. W. A Paleocene flora from Patagonia. Johns Hopkins Univ. Stud. Geol. 12, 33–50 (1937).

    Google Scholar 

  48. Iglesias, A. et al. Patagonia’s diverse but homogeneous early Paleocene forests: angiosperm leaves from the Danian Salamanca and Peñas Coloradas formations, San Jorge Basin, Chubut, Argentina. Palaeontol. Electronica 24, a02 (2021).

    Google Scholar 

  49. Wing, S. L. et al. Late Paleocene fossils from the Cerrejón Formation, Colombia, are the earliest record of Neotropical rainforest. Proc. Natl Acad. Sci. USA 106, 18627–18632 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Benton, M. J., Wilf, P. & Sauquet, H. The angiosperm terrestrial revolution and the origins of modern biodiversity. New Phytol. 233, 2017–2035 (2022).

    Article  PubMed  Google Scholar 

  51. Manchester, S. R. Morphology and affinities of Ampelocissites seeds (Vitaceae: Ampelopsis clade) from the Paleogene of Texas, USA. Syst. Bot. 45, 478–482 (2020).

    Article  Google Scholar 

  52. Ramírez, D. A. et al. Exhumation of the Panama basement complex and basins: Iimplications for the closure of the Central American seaway. Geochem. Geophys. Geosyst. 17, 1758–1777 (2016).

    Article  Google Scholar 

  53. Manchester, S. R. et al. Oligocene age of the classic Belén fruit and seed assemblage of north coastal Peru based on diatom biostratigraphy. J. Geol. 120, 467–476 (2012).

    Article  Google Scholar 

  54. Manchester, S. R., Chen, I. & Lott, T. A. Seeds of Ampelocissus, Cissus, and Leea (Vitales) from the Paleogene of western Peru and their biogeographic significance. Int. J. Plant Sci. 173, 933–943 (2012).

    Article  Google Scholar 

  55. Johnson, K. R. & Ellis, B. A tropical rainforest in Colorado 1.4 million years after the Cretaceous-Tertiary boundary. Science 296, 2379–2383 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Wing, S. L. et al. Transient floral change and rapid global warming at the Paleocene–Eocene boundary. Science 310, 993–996 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Wijninga, V. M. Neogene ecology of the Salto de Tequendama site (2475 m alt. Cordillera Oriental, Colombia): the paleobotanical record of montane and lowland forests. Rev. Palaeobot. Palynol. 92, 97–156 (1996).

    Article  Google Scholar 

  58. Jud, N. A. & Nelson, C. W. A liana from the lower Miocene of Panama and the fossil record of Connaraceae. Am. J. Bot. 104, 685–693 (2017).

    Article  PubMed  Google Scholar 

  59. Antoine, P. O. et al. Biotic community and landscape changes around the Eocene–Oligocene transition at Shapaja, Peruvian Amazonia: regional or global drivers? Glob. Planet. Change 202, 103512 (2021).

    Article  Google Scholar 

  60. Stull, G. W. et al. Fruits of an ‘Old World’ tribe (Phytocreneae; Icacinaceae) from the Paleogene of North and South America. Syst. Bot. 37, 784–794 (2012).

    Article  Google Scholar 

  61. Antoine, P. O. et al. Middle Eocene rodents from Peruvian Amazonia reveal the pattern and timing of caviomorph origins and biogeography. Proc. R. Soc. B 279, 1319–1326 (2012).

    Article  PubMed  Google Scholar 

  62. Jaramillo, C. A. et al. in Paleobotany and biogeography: a Festschrift for Alan Graham in his 80th year (eds Stevens, W. D. et al.) 134–251 (Missouri Botanical Garden Press, 2014).

  63. Hoorn, C. et al. Going north and south: the biogeographic history of Malvaceae in the wake of Neogene Andean uplift and connectivity between the Americas. Rev. Palaeobot. Palynol. 264, 90–109 (2019).

    Article  Google Scholar 

  64. Bacon, C. D. et al. Biological evidence supports an early and complex emergence of the Isthmus of Panama. Proc. Natl Acad. Sci. USA 112, 6110–6115 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Pérez-Escobar, O. A. et al. The origin and diversification of the hyperdiverse flora in the Chocó biogeographic region. Front. Plant Sci. 10, 1328 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Herrera, F. et al. Middle to late Paleocene Leguminosae fruits and leaves from Colombia. Aust. Syst. Bot. 201, 385–408 (2019).

    Article  Google Scholar 

  67. Herrera, F. et al. Fossil Araceae from a Paleocene neotropical rainforest in Colombia. Am. J. Bot. 95, 1569–1583 (2008).

    Article  PubMed  Google Scholar 

  68. Gómez-Navarro et al. Palms (Arecaceae) from a Paleocene rainforest of northern Colombia. Am. J. Bot. 96, 1300–1312 (2009).

    Article  PubMed  Google Scholar 

  69. Carvalho, M. R. et al. Paleocene Malvaceae from northern South America and their biogeographical implications. Am. J. Bot. 98, 1337–1355 (2011).

    Article  PubMed  Google Scholar 

  70. Doria, G., Jaramillo, C. A. & Herrera, F. Menispermaceae from the Cerrejón Formation, middle to late Paleocene, Colombia. Am. J. Bot. 95, 954–973 (2008).

    Article  PubMed  Google Scholar 

  71. Herrera, F. et al. Phytogeographic implications of fossil endocarps of Menispermaceae from the Paleocene of Colombia. Am. J. Bot. 98, 2004–2017 (2011).

    Article  PubMed  Google Scholar 

  72. Martinez, C. Passifloraceae seeds from the late Eocene of Colombia. Am. J. Bot. 104, 1857–1866 (2017).

    Article  PubMed  Google Scholar 

  73. Burnham, R. J. & Johnson, K. R. South American palaeobotany and the origins of neotropical rainforests. Phil. Trans. R. Soc. Lond. B 359, 1595–1610 (2004).

    Article  Google Scholar 

  74. Ricklefs, R. E. & Renner, S. S. Global correlations in tropical tree species richness and abundance reject neutrality. Science 335, 464–467 (2012).

    Article  CAS  PubMed  Google Scholar 

  75. Ferry Slik, J. W. et al. Phylogenetic classification of the world’s tropical forests. Proc. Natl Acad. Sci. USA 115, 1837–1842 (2018).

    Article  CAS  Google Scholar 

  76. Jaramillo, C. et al. Effects of rapid global warming at the Paleocene–Eocene boundary on neotropical vegetation. Science 330, 957–961 (2010).

    Article  CAS  PubMed  Google Scholar 

  77. Jaramillo, C. et al. Cenozoic plant diversity in the Neotropics. Science 311, 1893–1896 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Rodrigues Silva, G. A. et al. The impact of early Quaternary climate change on the diversification and population dynamics of a South American cactus species. J. Biogeogr. 45, 76–88 (2018).

    Article  Google Scholar 

  79. Bacon, C. D. et al. The origin of modern patterns of continental diversity in Mauritiinae palms: the Neotropical museum and the Afrotropical graveyard. Biol. Lett. 18, 20220214 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Wilf, P. et al. High plant diversity in Eocene South America: evidence from Patagonia. Science 300, 122–125 (2003).

    Article  CAS  PubMed  Google Scholar 

  81. Gandolfo, M. A. et al. Oldest known Eucalyptus macrofossils are from South America. PLoS ONE 6, e21084 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wilf, P. et al. Eocene Fagaceae from Patagonia and Gondwanan legacy in Asian rainforests. Science 364, eaaw5139 (2019).

    Article  CAS  PubMed  Google Scholar 

  83. Carvalho, M. R. et al. First record of Todea (Osmundaceae) in South America, from the early Eocene paleorainforests of Laguna del Hunco (Patagonia, Argentina). Am. J. Bot. 100, 1831–1848 (2013).

    Article  PubMed  Google Scholar 

  84. Louca, S. & Pennell, M. W. Extant timetrees are consistent with a myriad of diversification histories. Nature 580, 502–505 (2020).

    Article  CAS  PubMed  Google Scholar 

  85. Landis, M. J. et al. Joint phylogenetic estimation of geographic movements and biome shifts during the global diversification of Viburnum. Syst. Biol. 70, 67–85 (2021).

    Article  CAS  PubMed  Google Scholar 

  86. O’Meara, B. C. & Beaulieu, J. M. Potential survival of some, but not all, diversification methods. Preprint at EcoxRiv https://ecoevorxiv.org/repository/view/3912/ (2021).

  87. Rabosky, D. L. Extinction rates should not be estimated from molecular phylogenies. Evolution 64, 1816–1824 (2010).

    Article  PubMed  Google Scholar 

  88. Ree, R. H. & Smith, S. A. Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. Syst. Biol. 57, 4–14 (2008).

    Article  PubMed  Google Scholar 

  89. Landis, M. J., Edwards, E. J. & Donoghue, M. J. Modeling phylogenetic biome shifts on a planet with a past. Syst. Biol. 70, 86–107 (2021).

    Article  PubMed  Google Scholar 

  90. Hauffe, T. et al. A quantitative framework to infer the effect of traits, diversity and environment on dispersal and extinction rates from fossils. Methods Ecol. Evol. 13, 1201–1213 (2022).

    Article  Google Scholar 

  91. Vasconcelos, T. A trait‐based approach to determining principles of plant biogeography. Am. J. Bot. 110, e16127 (2023).

    Article  PubMed  Google Scholar 

  92. Cignoni, P. et al. MeshLab: an open-source mesh processing tool. In Sixth Eurographics Italian Chapter Conference 129–136 (European Association for Computer Graphics Capitolo Italiano, 2008).

  93. Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Brown, J. W., Walker, J. F. & Smith, S. A. Phyx: phylogenetic tools for unix. Bioinformatics 33, 1886–1888 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kozlov, A. M. et al. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 35, 4453–4455 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Smith, S. A. & O’Meara, B. C. treePL: divergence time estimation using penalized likelihood for large phylogenies. Bioinformatics 28, 2689–2690 (2012).

    Article  CAS  PubMed  Google Scholar 

  97. Yu, Y., Blair, C. & He, X. RASP 4: ancestral state reconstruction tool for multiple genes and characters. Mol. Biol. Evol. 37, 604–606 (2020).

    Article  CAS  PubMed  Google Scholar 

  98. Ree, R. H. & Sanmartín, I. Conceptual and statistical problems with the DEC+ J model of founder‐event speciation and its comparison with DEC via model selection. J. Biogeogr. 45, 741–749 (2018).

    Article  Google Scholar 

  99. Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 2, 217–223 (2012).

    Article  Google Scholar 

  100. Cao, W. et al. Improving global paleogeography since the late Paleozoic using paleobiology. Biogeosciences 14, 5425–5439 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

We thank A. Rincón, N. A. Jud, C. Montes, D. A. Ramírez and O. Rodríguez-Reyes for assistance with fieldwork in Panama; E. Cadena, D. Carvalho, J. Herrera and S. Herrera for assistance with fieldwork in Colombia; H. Wang for curatorial assistance; Z-X. Luo and A.I. Neander for aid with X-ray tomography at the University of Chicago; S. Gómez for assistance with paleogeographic reconstructions; and P. von Knorring for the fossil plant reconstructions. We also thank P. R. Crane and P. Wilf for valuable comments and discussions on drafts of the manuscript. F. Herrera thanks B. Himschoot for constant support. Funding for this work was provided by the National Geographic Society (grant EC-96755R-22) and the Negaunee Integrative Research Center, Field Museum to F.H.; the Anders Foundation, the 1923 Fund and Gregory D. and Jennifer Walston Johnson to C.J.

Author information

Authors and Affiliations

Authors

Contributions

F.H and M.R.C. designed the research. F.H., M.R.C., G.W.S., C.J. and S.R.M. performed research. F.H., M.R.C. and S.R.M. collected the materials. F.H., M.R.C. and G.W.S. analysed the data. F.H. wrote the paper in discussion with M.R.C., G.W.S., C.J. and S.R.M.

Corresponding author

Correspondence to Fabiany Herrera.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Plants thanks Zhi-Duan Chen, Tao Su and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–6, Information, Phylogenetic Results, and Tables 1 and 2.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herrera, F., Carvalho, M.R., Stull, G.W. et al. Cenozoic seeds of Vitaceae reveal a deep history of extinction and dispersal in the Neotropics. Nat. Plants 10, 1091–1099 (2024). https://doi.org/10.1038/s41477-024-01717-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-024-01717-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing