Faisal Mahmood

Boston, Massachusetts, United States Contact Info
10K followers 500+ connections

Join to view profile

Activity

Join now to see all activity

Experience & Education

  • Harvard Medical School

View Faisal’s full experience

See their title, tenure and more.

or

By clicking Continue to join or sign in, you agree to LinkedIn’s User Agreement, Privacy Policy, and Cookie Policy.

Licenses & Certifications

Publications

  • AI-based pathology predicts origins for cancers of unknown primary

    Nature

    Cancer of unknown primary (CUP) origin is an enigmatic group of diagnoses in which the primary anatomical site of tumour origin cannot be determined. This poses a considerable challenge, as modern therapeutics are predominantly specific to the primary tumour. Recent research has focused on using genomics and transcriptomics to identify the origin of a tumour. However, genomic testing is not always performed and lacks clinical penetration in low-resource settings. Here, to overcome these…

    Cancer of unknown primary (CUP) origin is an enigmatic group of diagnoses in which the primary anatomical site of tumour origin cannot be determined. This poses a considerable challenge, as modern therapeutics are predominantly specific to the primary tumour. Recent research has focused on using genomics and transcriptomics to identify the origin of a tumour. However, genomic testing is not always performed and lacks clinical penetration in low-resource settings. Here, to overcome these challenges, we present a deep-learning-based algorithm—Tumour Origin Assessment via Deep Learning (TOAD)—that can provide a differential diagnosis for the origin of the primary tumour using routinely acquired histology slides. We used whole-slide images of tumours with known primary origins to train a model that simultaneously identifies the tumour as primary or metastatic and predicts its site of origin. On our held-out test set of tumours with known primary origins, the model achieved a top-1 accuracy of 0.83 and a top-3 accuracy of 0.96, whereas on our external test set it achieved top-1 and top-3 accuracies of 0.80 and 0.93, respectively. We further curated a dataset of 317 cases of CUP for which a differential diagnosis was assigned. Our model predictions resulted in concordance for 61% of cases and a top-3 agreement of 82%. TOAD can be used as an assistive tool to assign a differential diagnosis to complicated cases of metastatic tumours and CUPs and could be used in conjunction with or in lieu of ancillary tests and extensive diagnostic work-ups to reduce the occurrence of CUP.

    See publication
  • Data-efficient and weakly supervised computational pathology on whole-slide images

    Nature Biomedical Engineering

    Deep-learning methods for computational pathology require either manual annotation of gigapixel whole-slide images (WSIs) or large datasets of WSIs with slide-level labels and typically suffer from poor domain adaptation and interpretability. Here we report an interpretable weakly supervised deep-learning method for data-efficient WSI processing and learning that only requires slide-level labels. The method, which we named clustering-constrained-attention multiple-instance learning (CLAM), uses…

    Deep-learning methods for computational pathology require either manual annotation of gigapixel whole-slide images (WSIs) or large datasets of WSIs with slide-level labels and typically suffer from poor domain adaptation and interpretability. Here we report an interpretable weakly supervised deep-learning method for data-efficient WSI processing and learning that only requires slide-level labels. The method, which we named clustering-constrained-attention multiple-instance learning (CLAM), uses attention-based learning to identify subregions of high diagnostic value to accurately classify whole slides and instance-level clustering over the identified representative regions to constrain and refine the feature space. By applying CLAM to the subtyping of renal cell carcinoma and non-small-cell lung cancer as well as the detection of lymph node metastasis, we show that it can be used to localize well-known morphological features on WSIs without the need for spatial labels, that it overperforms standard weakly supervised classification algorithms and that it is adaptable to independent test cohorts, smartphone microscopy and varying tissue content.

    See publication
  • Pathomic Fusion: An Integrated Framework for Fusing Histopathology and Genomic Features for Cancer Diagnosis and Prognosis

    IEEE Transactions on Medical Imaging

    Cancer diagnosis, prognosis, and therapeutic response predictions are based on morphological information from histology slides and molecular profiles from genomic data. However, most deep learning-based objective outcome prediction and grading paradigms are based on histology or genomics alone and do not make use of the complementary information in an intuitive manner. In this work, we propose Pathomic Fusion, an interpretable strategy for end-to-end multimodal fusion of histology image and…

    Cancer diagnosis, prognosis, and therapeutic response predictions are based on morphological information from histology slides and molecular profiles from genomic data. However, most deep learning-based objective outcome prediction and grading paradigms are based on histology or genomics alone and do not make use of the complementary information in an intuitive manner. In this work, we propose Pathomic Fusion, an interpretable strategy for end-to-end multimodal fusion of histology image and genomic (mutations, CNV, RNASeq) features for survival outcome prediction. Our approach models pairwise feature interactions across modalities by taking the Kronecker product of unimodal feature representations, and controls the expressiveness of each representation via a gatingbased attention mechanism. Following supervised learning, we are able to interpret and saliently localize features across each modality, and understand how feature importance shifts when conditioning on multimodal input. We validate our approach using glioma and clear cell renal cell carcinoma datasets from the Cancer Genome Atlas (TCGA), which contains paired wholeslide image, genotype, and transcriptome data with ground truth survival and histologic grade labels. In a 15-fold cross-validation, our results demonstrate that the proposed multimodal fusion paradigm improves prognostic determinations from ground truth grading and molecular subtyping, as well as unimodal deep networks trained on histology and genomic data alone. The proposed method establishes insight and theory on how to train deep networks on multimodal biomedical data in an intuitive manner, which will be useful for other problems in medicine that seek to combine heterogeneous data streams for understanding diseases and predicting response and resistance to treatment. Code and trained models are made available at: https://github.com/mahmoodlab/PathomicFusion.

    See publication
  • EndoL2H: Deep Super-Resolution for Capsule Endoscopy

    IEEE Transactions on Medical Imaging

    Although wireless capsule endoscopy is the preferred modality for diagnosis and assessment of small bowel diseases, the poor camera resolution is a substantial limitation for both subjective and automated diagnostics. Enhanced-resolution endoscopy has shown to improve adenoma detection rate for conventional endoscopy and is likely to do the same for capsule endoscopy. In this work, we propose and quantitatively validate a novel framework to learn a mapping from low-to-high-resolution endoscopic…

    Although wireless capsule endoscopy is the preferred modality for diagnosis and assessment of small bowel diseases, the poor camera resolution is a substantial limitation for both subjective and automated diagnostics. Enhanced-resolution endoscopy has shown to improve adenoma detection rate for conventional endoscopy and is likely to do the same for capsule endoscopy. In this work, we propose and quantitatively validate a novel framework to learn a mapping from low-to-high-resolution endoscopic images. We combine conditional adversarial networks with a spatial attention block to improve the resolution by up to factors of 8×, 10×, 12×, respectively. Quantitative and qualitative studies demonstrate the superiority of EndoL2H over state-of-the-art deep super-resolution methods Deep Back-Projection Networks (DBPN), Deep Residual Channel Attention Networks (RCAN) and Super Resolution Generative Adversarial Network (SRGAN). Mean Opinion Score (MOS) tests were performed by 30 gastroenterologists qualitatively assess and confirm the clinical relevance of the approach. EndoL2H is generally applicable to any endoscopic capsule system and has the potential to improve diagnosis and better harness computational approaches for polyp detection and characterization. Our code and trained models are available at https://github.com/CapsuleEndoscope/EndoL2H.

    See publication
  • GANPOP: Generative Adversarial Network Prediction of Optical Properties From Single Snapshot Wide-Field Images

    IEEE Transactions on Medical Imaging

    We present a deep learning framework for wide-field, content-aware estimation of absorption and scattering coefficients of tissues, called Generative Adversarial Network Prediction of Optical Properties (GANPOP). Spatial frequency domain imaging is used to obtain ground-truth optical properties at 660 nm from in vivo human hands and feet, freshly resected human esophagectomy samples, and homogeneous tissue phantoms. Images of objects with either flat-field or structured illumination are paired…

    We present a deep learning framework for wide-field, content-aware estimation of absorption and scattering coefficients of tissues, called Generative Adversarial Network Prediction of Optical Properties (GANPOP). Spatial frequency domain imaging is used to obtain ground-truth optical properties at 660 nm from in vivo human hands and feet, freshly resected human esophagectomy samples, and homogeneous tissue phantoms. Images of objects with either flat-field or structured illumination are paired with registered optical property maps and are used to train conditional generative adversarial networks that estimate optical properties from a single input image. We benchmark this approach by comparing GANPOP to a single-snapshot optical property (SSOP) technique, using a normalized mean absolute error (NMAE) metric. In human gastrointestinal specimens, GANPOP with a single structured-light input image estimates the reduced scattering and absorption coefficients with 60% higher accuracy than SSOP while GANPOP with a single flat-field illumination image achieves similar accuracy to SSOP. When applied to both in vivo and ex vivo swine tissues, a GANPOP model trained solely on structured-illumination images of human specimens and phantoms estimates optical properties with approximately 46% improvement over SSOP, indicating adaptability to new, unseen tissue types. Given a training set that appropriately spans the target domain, GANPOP has the potential to enable rapid and accurate wide-field measurements of optical properties.

    See publication
  • Learning to Navigate Endoscopic Capsule Robots

    IEEE Robotics and Automation Letters

    Deep reinforcement learning (DRL) techniques have been successful in several domains such as physical simulations, computer games and simulated robotic tasks, yet the transfer of these successful learning concepts from simulations into the real world scenarios remains still a challenge. In this study, a DRL approach is proposed to learn the continuous control of a magnetically actuated soft capsule endoscope (MASCE). Proposed controller approach can alleviate the need for tedious modelling of…

    Deep reinforcement learning (DRL) techniques have been successful in several domains such as physical simulations, computer games and simulated robotic tasks, yet the transfer of these successful learning concepts from simulations into the real world scenarios remains still a challenge. In this study, a DRL approach is proposed to learn the continuous control of a magnetically actuated soft capsule endoscope (MASCE). Proposed controller approach can alleviate the need for tedious modelling of complex and highly non-linear physical phenomena such as magnetic interactions, robot body dynamics and tissuerobot interactions. Experiments performed in real ex-vivo porcine stomachs prove the successful control of the MASCE with trajectory tracking errors on the order of a millimeter.

    See publication
  • Deep Adversarial Training for Multi-Organ Nuclei Segmentation in Histopathology Images

    IEEE Transactions on Medical Imaging

    Nuclei segmentation is a fundamental task that is critical for various computational pathology applications including nuclei morphology analysis, cell type classification, and cancer grading. Conventional vision-based methods for nuclei segmentation struggle in challenging cases and deep learning approaches have proven to be more robust and generalizable. However, CNNs require large amounts of labeled histopathology data. Moreover, conventional CNN-based approaches lack structured prediction…

    Nuclei segmentation is a fundamental task that is critical for various computational pathology applications including nuclei morphology analysis, cell type classification, and cancer grading. Conventional vision-based methods for nuclei segmentation struggle in challenging cases and deep learning approaches have proven to be more robust and generalizable. However, CNNs require large amounts of labeled histopathology data. Moreover, conventional CNN-based approaches lack structured prediction capabilities which are required to distinguish overlapping and clumped nuclei. Here, we present an approach to nuclei segmentation that overcomes these challenges by utilizing a conditional generative adversarial network (cGAN) trained with synthetic and real data. We generate a large dataset of H&E training images with perfect nuclei segmentation labels using an unpaired GAN framework. This synthetic data along with real histopathology data from six different organs are used to train a conditional GAN with spectral normalization and gradient penalty for nuclei segmentation. This adversarial regression framework enforces higher order consistency when compared to conventional CNN models. We demonstrate that this nuclei segmentation approach generalizes across different organs, sites, patients and disease states, and outperforms conventional approaches, especially in isolating individual and overlapping nuclei.

    See publication
  • DeepLSR: a deep learning approach for laser speckle reduction

    Biomedical Optics Express

    Speckle artifacts degrade image quality in virtually all modalities that utilize coherent energy, including optical coherence tomography, reflectance confocal microscopy, ultrasound, and widefield imaging with laser illumination. We present an adversarial deep learning framework for laser speckle reduction, called DeepLSR (https://durr.jhu.edu/DeepLSR), that transforms images from a source domain of coherent illumination to a target domain of speckle-free, incoherent illumination. We apply this…

    Speckle artifacts degrade image quality in virtually all modalities that utilize coherent energy, including optical coherence tomography, reflectance confocal microscopy, ultrasound, and widefield imaging with laser illumination. We present an adversarial deep learning framework for laser speckle reduction, called DeepLSR (https://durr.jhu.edu/DeepLSR), that transforms images from a source domain of coherent illumination to a target domain of speckle-free, incoherent illumination. We apply this method to widefield images of objects and tissues illuminated with a multi-wavelength laser, using light emitting diode-illuminated images as ground truth. In images of gastrointestinal tissues, DeepLSR reduces laser speckle noise by 6.4 dB, compared to a 2.9 dB reduction from optimized non-local means processing, a 3.0 dB reduction from BM3D, and a 3.7 dB reduction from an optical speckle reducer utilizing an oscillating diffuser. Further, DeepLSR can be combined with optical speckle reduction to reduce speckle noise by 9.4 dB. This dramatic reduction in speckle noise may enable the use of coherent light sources in applications that require small illumination sources and high-quality imaging, including medical endoscopy.

    See publication
  • Large dynamic range autorefraction with a low-cost diffuser wavefront sensor

    Biomedical Optics Express

    Wavefront sensing with a thin diffuser has emerged as a potential low-cost alternative to a lenslet array for aberrometry. Here we show that displacement of caustic patterns can be tracked for estimating wavefront gradient in a diffuser wavefront sensor (DWFS), enabling large dynamic-range wavefront measurements with sufficient accuracy for eyeglass prescription measurements. We compare the dynamic range, repeatability, precision, and number of resolvable prescriptions of a DWFS to a…

    Wavefront sensing with a thin diffuser has emerged as a potential low-cost alternative to a lenslet array for aberrometry. Here we show that displacement of caustic patterns can be tracked for estimating wavefront gradient in a diffuser wavefront sensor (DWFS), enabling large dynamic-range wavefront measurements with sufficient accuracy for eyeglass prescription measurements. We compare the dynamic range, repeatability, precision, and number of resolvable prescriptions of a DWFS to a Shack-Hartmann wavefront sensor (SHWFS) for autorefraction measurement. We induce spherical and cylindrical errors in a model eye and use a multi-level Demon’s non-rigid registration algorithm to estimate caustic displacements relative to an emmetropic model eye. When compared to spherical error measurements with the SHWFS using a laser diode with a laser speckle reducer, the DWFS demonstrates a ∼5-fold improvement in dynamic range (−4.0 to +4.5 D vs. −22.0 to +19.5 D) with less than half the reduction in resolution (0.072 vs. 0.116 D), enabling a ∼3-fold increase in the number of resolvable prescriptions (118 vs. 358). In addition to being lower-cost, the unique, non-periodic nature of the caustic pattern formed by a diffuser enables a larger dynamic range of aberration measurements compared to a lenslet array

    See publication
  • Deep Learning and Conditional Random Fields-based Depth Estimation and Topographical Reconstruction from Conventional Endoscopy

    Medical Image Analysis

    Colorectal cancer is the fourth leading cause of cancer deaths worldwide and the second leading cause in the United States. The risk of colorectal cancer can be mitigated by the identification and removal of premalignant lesions through optical colonoscopy. Unfortunately, conventional colonoscopy misses more than 20% of the polyps that should be removed, due in part to poor contrast of lesion topography. Imaging tissue topography during a colonoscopy is difficult because of the size constraints…

    Colorectal cancer is the fourth leading cause of cancer deaths worldwide and the second leading cause in the United States. The risk of colorectal cancer can be mitigated by the identification and removal of premalignant lesions through optical colonoscopy. Unfortunately, conventional colonoscopy misses more than 20% of the polyps that should be removed, due in part to poor contrast of lesion topography. Imaging tissue topography during a colonoscopy is difficult because of the size constraints of the endoscope and the deforming mucosa. Most existing methods make geometric assumptions or incorporate a priori information, which limits accuracy and sensitivity. In this paper, we present a method that avoids these restrictions, using a joint deep convolutional neural network-conditional random field (CNN-CRF) framework. Estimated depth is used to reconstruct the topography of the surface of the colon from a single image. We train the unary and pairwise potential functions of a CRF in a CNN on synthetic data, generated by developing an endoscope camera model and rendering over 100,000 images of an anatomically-realistic colon. We validate our approach with real endoscopy images from a porcine colon, transferred to a synthetic-like domain, with ground truth from registered computed tomography measurements. The CNN-CRF approach estimates depths with a relative error of 0.152 for synthetic endoscopy images and 0.242 for real endoscopy images. We show that the estimated depth maps can be used for reconstructing the topography of the mucosa from conventional colonoscopy images. This approach can easily be integrated into existing endoscopy systems and provides a foundation for improving computer-aided detection algorithms for detection, segmentation and classification of lesions.

    Other authors
    • Nicholas J Durr
    See publication
  • Deep Learning with Cinematic Rendering: Fine-Tuning Deep Neural Networks Using Photorealistic Medical Images

    Physics in Medicine and Biology

    Deep learning has emerged as a powerful artificial intelligence tool to interpret medical images for a growing variety of applications. However, the paucity of medical imaging data with high-quality annotations that is necessary for training such methods ultimately limits their performance. Medical data is challenging to acquire due to privacy issues, shortage of experts available for annotation, limited representation of rare conditions and cost. This problem has previously been addressed by…

    Deep learning has emerged as a powerful artificial intelligence tool to interpret medical images for a growing variety of applications. However, the paucity of medical imaging data with high-quality annotations that is necessary for training such methods ultimately limits their performance. Medical data is challenging to acquire due to privacy issues, shortage of experts available for annotation, limited representation of rare conditions and cost. This problem has previously been addressed by using synthetically generated data. However, networks trained on synthetic data often fail to generalize to real data. Cinematic rendering simulates the propagation and interaction of light passing through tissue models reconstructed from CT data, enabling the generation of photorealistic images. In this paper, we present one of the first applications of cinematic rendering in deep learning, in which we propose to fine-tune synthetic data-driven networks using cinematically rendered CT data for the task of monocular depth estimation in endoscopy. Our experiments demonstrate that: (a) Convolutional Neural Networks (CNNs) trained on synthetic data and fine-tuned on photorealistic cinematically rendered data adapt better to real medical images and demonstrate more robust performance when compared to networks with no fine-tuning, (b) these fine-tuned networks require less training data to converge to an optimal solution, and (c) fine-tuning with data from a variety of photorealistic rendering conditions of the same scene prevents the network from learning patient-specific information and aids in generalizability of the model. Our empirical evaluation demonstrates that networks fine-tuned with cinematically rendered data predict depth with 56.87% less error for rendered endoscopy images and 27.49% less error for real porcine colon endoscopy images.

    See publication
  • Unsupervised Reverse Domain Adaptation for Synthetic Medical Images via Adversarial Training

    IEEE Transactions on Medical Imaging

    To realize the full potential of deep learning for medical imaging, large annotated datasets are required for training. Such datasets are difficult to acquire due to privacy issues, lack of experts available for annotation, underrepresentation of rare conditions and poor standardization. The lack of annotated data has been addressed in conventional vision applications using synthetic images refined via unsupervised adversarial training to look like real images. However, this approach is…

    To realize the full potential of deep learning for medical imaging, large annotated datasets are required for training. Such datasets are difficult to acquire due to privacy issues, lack of experts available for annotation, underrepresentation of rare conditions and poor standardization. The lack of annotated data has been addressed in conventional vision applications using synthetic images refined via unsupervised adversarial training to look like real images. However, this approach is difficult to extend to general medical imaging because of the complex and diverse set of features found in real human tissues. We propose a novel framework that uses a reverse flow, where adversarial training is used to make real medical images more like synthetic images, and clinically-relevant features are preserved via self-regularization. These domain-adapted synthetic-like images can then be accurately interpreted by networks trained on large datasets of synthetic medical images. We implement this approach on the notoriously difficult task of depth-estimation from monocular endoscopy which has a variety of applications in colonoscopy, robotic surgery and invasive endoscopic procedures. We train a depth estimator on a large dataset of synthetic images generated using an accurate forward model of an endoscope and an anatomically-realistic colon. Our analysis demonstrates that the structural similarity of endoscopy depth estimation in a real pig colon predicted from a network trained solely on synthetic data improved by 78.7% by using reverse domain adaptation.

    See publication
  • Topographical Reconstructions from Monocular Optical Colonoscopy Images via Deep Learning

    IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018)

    Colorectal cancer is a leading cause of cancer deaths worldwide, but mortality can be mitigated by the detection and removal of premalignant lesions. Unfortunately, conventional 2D optical colonoscopy does not capture topographical information of the surface of the mucosa and thus has a high lesion miss rate. In this short paper, we use a joint deep convolutional neural network-conditional random field (CRF) framework for depth estimation from monocular colonoscopy images. Unlike previous…

    Colorectal cancer is a leading cause of cancer deaths worldwide, but mortality can be mitigated by the detection and removal of premalignant lesions. Unfortunately, conventional 2D optical colonoscopy does not capture topographical information of the surface of the mucosa and thus has a high lesion miss rate. In this short paper, we use a joint deep convolutional neural network-conditional random field (CRF) framework for depth estimation from monocular colonoscopy images. Unlike previous approaches, this method does not make any geometric assumptions. The estimated depth is used to reconstruct the topography of the surface of the colon. Using digitally generated synthetic endoscopy data and CT-Phantom data, with corresponding ground truth depths, we train the unary and pairwise potential functions of a conditional random filed in a joint network. Results show that this approach can estimate depths for test data with an 84% accuracy. We show that estimated depth maps can be used for reconstructing the topography of the mucosa from real colonoscopy images. This topographical information can be used for improving learning-based algorithms for detection, segmentation and identification of lesions.

    See publication
  • Adaptive Graph-based Total Variation for Tomographic Reconstructions

    IEEE Signal Processing Letters

    Sparsity exploiting image reconstruction (SER) methods have been extensively used with Total Variation (TV) regularization for tomographic reconstructions. Local TV methods fail to preserve texture details and often create additional artifacts due to over-smoothing. Non-Local TV (NLTV) methods have been proposed as a solution to this but they either lack continuous updates due to computational constraints or limit the locality to a small region. In this paper, we propose Adaptive Graph-based TV…

    Sparsity exploiting image reconstruction (SER) methods have been extensively used with Total Variation (TV) regularization for tomographic reconstructions. Local TV methods fail to preserve texture details and often create additional artifacts due to over-smoothing. Non-Local TV (NLTV) methods have been proposed as a solution to this but they either lack continuous updates due to computational constraints or limit the locality to a small region. In this paper, we propose Adaptive Graph-based TV (AGTV). The proposed method goes beyond spatial similarity between different regions of an image being reconstructed by establishing a connection between similar regions in the entire image regardless of spatial distance. As compared to NLTV the proposed method is computationally efficient and involves updating the graph prior during every iteration making the connection between similar regions stronger. Moreover, it promotes sparsity in the wavelet and graph gradient domains. Since TV is a special case of graph TV the proposed method can also be seen as a generalization of SER and TV methods.

    See publication
  • An Extended Field-based Method for Noise Removal from Electron Tomographic Reconstructions

    IEEE Access

    Molecular structure determination is important for understanding functionalities and dynamics of macromolecules, such as proteins and nucleic acids. Cryo-electron tomography is a technique that can be used to determine structures of individual macromolecules, thus providing snapshots of their native conformations. Such 3D reconstructions encounter several types of imperfections due to missing, corrupted and lowcontrast data. In this study, we demonstrate that extending the reconstruction space,…

    Molecular structure determination is important for understanding functionalities and dynamics of macromolecules, such as proteins and nucleic acids. Cryo-electron tomography is a technique that can be used to determine structures of individual macromolecules, thus providing snapshots of their native conformations. Such 3D reconstructions encounter several types of imperfections due to missing, corrupted and lowcontrast data. In this study, we demonstrate that extending the reconstruction space, which increases the dimensionality of the linear system being solved during reconstruction, facilitates the separation of signal and noise. A considerable amount of the noise associated with collected projection data arises independently from the geometric constraint of image formation, whereas the solution to the reconstruction problem must satisfy such geometric constraints. Increasing the dimensionality thereby allows for a redistribution of such noise within the extended reconstruction space, while the geometrically constrained approximate solution stays in an effectively lower dimensional subspace. Employing various tomographic reconstruction methods with regularization capability we performed extensive simulation and testing and observed that enhanced dimensionality significantly improves the accuracy of the reconstruction. Our results were validated with reconstructions of colloidal silica nanoparticles as well as P. falciparum Erythrocyte Membrane Protein 1 (PfEMP1). Although the proposed method is used in the context of Cryo-ET, the method is general and can be extended to a variety of other tomographic modalities.

    See publication
  • Algorithm and Architecture Optimization for 2D Discrete Fourier Transforms with Simultaneous Edge Artifact Removal

    International Journal of Reconfigurable Computing

    wo-dimensional discrete Fourier transform (DFT) is an extensively used and computationally intensive algorithm, with a plethora of applications. 2D images are, in general, nonperiodic but are assumed to be periodic while calculating their DFTs. This leads to cross-shaped artifacts in the frequency domain due to spectral leakage. These artifacts can have critical consequences if the DFTs are being used for further processing, specifically for biomedical applications. In this paper we present a…

    wo-dimensional discrete Fourier transform (DFT) is an extensively used and computationally intensive algorithm, with a plethora of applications. 2D images are, in general, nonperiodic but are assumed to be periodic while calculating their DFTs. This leads to cross-shaped artifacts in the frequency domain due to spectral leakage. These artifacts can have critical consequences if the DFTs are being used for further processing, specifically for biomedical applications. In this paper we present a novel FPGA-based solution to calculate 2D DFTs with simultaneous edge artifact removal for high-performance applications. Standard approaches for removing these artifacts, using apodization functions or mirroring, either involve removing critical frequencies or necessitate a surge in computation by significantly increasing the image size. We use a periodic plus smooth decomposition-based approach that was optimized to reduce DRAM access and to decrease 1D FFT invocations. 2D FFTs on FPGAs also suffer from the so-called “intermediate storage” or “memory wall” problem, which is due to limited on-chip memory, increasingly large image sizes, and strided column-wise external memory access. We propose a “tile-hopping” memory mapping scheme that significantly improves the bandwidth of the external memory for column-wise reads and can reduce the energy consumption up to 53%. We tested our proposed optimizations on a PXIe-based Xilinx Kintex 7 FPGA system communicating with a host PC, which gives us the advantage of further expanding the design for biomedical applications such as electron microscopy and tomography. We demonstrate that our proposed optimizations can lead to 2.8x reduced FPGA and DRAM energy consumption when calculating high-throughput 4096x4096 2D FFTs with simultaneous edge artifact removal. We also used our high-performance 2D FFT implementation to accelerate filtered back-projection for reconstructing tomographic data.

    See publication
  • Reducing the Cost of Removing Border Artefacts in Fourier Transforms

    HEART2017: Proceedings of the 8th International Symposium on Highly Efficient Accelerators and Reconfigurable Technologies

    Many image processing algorithms are implemented in a combination of spatial and frequency domains. The fast Fourier transform (FFT) is the workhorse of such algorithms. One limitation of the FFT is artefacts that result from the implicit periodicity within the spatial domain. A new periodic plus smooth decomposition has recently been proposed for removing such artefacts, although this comes at the cost of an additional 2D FFT. In this paper, we restructure the decomposition to enable it to be…

    Many image processing algorithms are implemented in a combination of spatial and frequency domains. The fast Fourier transform (FFT) is the workhorse of such algorithms. One limitation of the FFT is artefacts that result from the implicit periodicity within the spatial domain. A new periodic plus smooth decomposition has recently been proposed for removing such artefacts, although this comes at the cost of an additional 2D FFT. In this paper, we restructure the decomposition to enable it to be calculated with a single 1D FFT, which can significantly accelerate artefact free Fourier transformation. The cost of this acceleration is a small amount of additional storage to hold the representation of the smooth image component.

    Other authors
    • Donald Bailey
    • Ulf Skoglund
    See publication
  • Graph-based Sinogram Denoising for Tomographic Reconstructions

    38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2016

    Limited data and low dose constraints are common problems in a variety of tomographic reconstruction paradigms which lead to noisy and incomplete data. Over the past few years sinogram denoising has become an essential pre-processing step for low dose Computed Tomographic (CT) reconstructions. We propose a novel sinogram denoising algorithm inspired by the modern field of signal processing on graphs. Graph based methods often perform better than standard filtering operations since they can…

    Limited data and low dose constraints are common problems in a variety of tomographic reconstruction paradigms which lead to noisy and incomplete data. Over the past few years sinogram denoising has become an essential pre-processing step for low dose Computed Tomographic (CT) reconstructions. We propose a novel sinogram denoising algorithm inspired by the modern field of signal processing on graphs. Graph based methods often perform better than standard filtering operations since they can exploit the signal structure. This makes the sinogram an ideal candidate for graph based denoising since it generally has a piecewise smooth structure. We test our method with a variety of phantoms and different reconstruction methods. Our numerical study shows that the proposed algorithm improves the performance of analytical filtered back-projection (FBP) and iterative methods ART (Kaczmarz) and SIRT (Cimmino).We observed that graph denoised sinogram always minimizes the error measure and improves the accuracy of the solution as compared to regular reconstructions.

    Other authors
    • Nauman Shahid
    • Ulf Skoglund
    See publication
  • Effect of Subliminal Lexical Priming on the Subjective Perception of Images: A Machine Learning Approach

    PLoS ONE 11(2)

    The purpose of the study is to examine the effect of subliminal priming in terms of the perception of images influenced by words with positive, negative, and neutral emotional content, through electroencephalograms (EEGs). Participants were instructed to rate how much they like the stimuli images, on a 7-point Likert scale, after being subliminally exposed to masked lexical prime words that exhibit positive, negative, and neutral connotations with respect to the images. Simultaneously, the EEGs…

    The purpose of the study is to examine the effect of subliminal priming in terms of the perception of images influenced by words with positive, negative, and neutral emotional content, through electroencephalograms (EEGs). Participants were instructed to rate how much they like the stimuli images, on a 7-point Likert scale, after being subliminally exposed to masked lexical prime words that exhibit positive, negative, and neutral connotations with respect to the images. Simultaneously, the EEGs were recorded. Statistical tests such as repeated measures ANOVAs and two-tailed paired-samples t-tests were performed to measure significant differences in the likability ratings among the three prime affect types; the results showed a strong shift in the likeness judgment for the images in the positively primed condition compared to the other two. The acquired EEGs were examined to assess the difference in brain activity associated with the three different conditions. The consistent results obtained confirmed the overall priming effect on participants’ explicit ratings. In addition, machine learning algorithms such as support vector machines (SVMs), and AdaBoost classifiers were applied to infer the prime affect type from the ERPs. The highest classification rates of 95.0% and 70.0% obtained respectively for average-trial binary classifier and average-trial multi-class further emphasize that the ERPs encode information about the different kinds of primes.

    Other authors
    See publication
  • 2D Discrete Fourier Transform with simultaneous edge artifact removal for real-time applications

    IEEE International Conference on Field Programmable Technology (FPT), 2015

    Two-Dimensional (2D) Discrete Fourier Transform (DFT) is a basic and computationally intensive algorithm, with a vast variety of applications. 2D images are, in general, non-periodic, but are assumed to be periodic while calculating their DFTs. This leads to cross-shaped artifacts in the frequency domain due to spectral leakage. These artifacts can have critical consequences if the DFTs are being used for further processing. In this paper we present a novel FPGA-based design to calculate…

    Two-Dimensional (2D) Discrete Fourier Transform (DFT) is a basic and computationally intensive algorithm, with a vast variety of applications. 2D images are, in general, non-periodic, but are assumed to be periodic while calculating their DFTs. This leads to cross-shaped artifacts in the frequency domain due to spectral leakage. These artifacts can have critical consequences if the DFTs are being used for further processing. In this paper we present a novel FPGA-based design to calculate high-throughput 2D DFTs with simultaneous edge artifact removal. Standard approaches for removing these artifacts using apodization functions or mirroring, either involve removing critical frequencies or a surge in computation by increasing image size. We use a periodic-plus-smooth decomposition based artifact removal algorithm optimized for FPGA implementation, while still achieving real-time (~23 frames per second) performance for a 512x512 size image stream. Our optimization approach leads to a significant decrease in external memory utilization thereby avoiding memory conflicts and simplifies the design. We have tested our design on a PXIe based Xilinx Kintex 7 FPGA system communicating with a host PC which gives us the advantage to further expand the design for industrial applications.

    Other authors
    See publication
  • On the Effect of Subliminal Priming on Subjective Perception of Images: A Machine Learning Approach

    36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 2014

    The research presented in this article investigates the influence of subliminal prime words on peoples' judgment about images, through electroencephalograms (EEGs). In this cross domain priming paradigm, the participants are asked to rate how much they like the stimulus images, on a 7-point Likert scale, after being subliminally exposed to masked lexical prime words, with EEG recorded simultaneously. Statistical analysis tools are used to analyze the effect of priming on behavior, and machine…

    The research presented in this article investigates the influence of subliminal prime words on peoples' judgment about images, through electroencephalograms (EEGs). In this cross domain priming paradigm, the participants are asked to rate how much they like the stimulus images, on a 7-point Likert scale, after being subliminally exposed to masked lexical prime words, with EEG recorded simultaneously. Statistical analysis tools are used to analyze the effect of priming on behavior, and machine learning techniques to infer the primes from EEGs. The experiment reveals strong effects of subliminal priming on the participants' explicit rating of images. The subjective judgment affected by the priming makes visible change in event-related potentials (ERPs); results show larger ERP amplitude for the negative primes compared with positive and neutral primes. In addition, Support Vector Machine (SVM) based classifiers are proposed to infer the prime types from the average ERPs, which yields a classification rate of 70%.

    Other authors
    See publication

Patents

  • 2D discrete fourier transform with simultaneous edge artifact removal for real-time applications

    Issued US US10121233B2

    A method for performing 2-dimensional discrete Fourier transform of a subject image data to be performed in one or more digital processors includes performing 1-dimensional fast Fourier transform on each row of the subject image data and 1-dimensional fast Fourier transform on each column of the subject image, and performing a simplified fast Fourier transform processing on the extracted boundary image without performing column-by-column 1-dimensional fast Fourier transform by: performing…

    A method for performing 2-dimensional discrete Fourier transform of a subject image data to be performed in one or more digital processors includes performing 1-dimensional fast Fourier transform on each row of the subject image data and 1-dimensional fast Fourier transform on each column of the subject image, and performing a simplified fast Fourier transform processing on the extracted boundary image without performing column-by-column 1-dimensional fast Fourier transform by: performing 1-dimensional fast Fourier transform only on a first column vector in the extracted boundary image data, using scaled column vectors to derive fast Fourier transform of remaining columns of the extracted boundary image data, and performing 1-dimensional fast Fourier transform on each row of the extracted boundary image data. Then, fast Fourier transform of a periodic component of the subject image data with edge-artifacts removed and fast Fourier transform of a smooth component of the subject image data are derived from results of steps (b) and (c).

    See patent
  • Extended field iterative reconstruction technique (EFIRT) for correlated noise removal

    Issued US US9594032B2

    Computerized method and system for improving 3D reconstruction images involves applying the Extended Field Iterative Reconstruction Technique (EFIRT) to remove correlated noise, in addition to with COMET (constrained maximum relative entropy tomography) or other regularization techniques to eliminate uncorrelated noise, wherein the EFIRT is applied by performing a set of successive reconstructions on an extended field larger than a region of interest (ROI); and extracting and averaging the ROI…

    Computerized method and system for improving 3D reconstruction images involves applying the Extended Field Iterative Reconstruction Technique (EFIRT) to remove correlated noise, in addition to with COMET (constrained maximum relative entropy tomography) or other regularization techniques to eliminate uncorrelated noise, wherein the EFIRT is applied by performing a set of successive reconstructions on an extended field larger than a region of interest (ROI); and extracting and averaging the ROI from said set of successive reconstructions.

    See patent

Honors & Awards

  • NIGMS MIRA Outstanding Investigator Award

    National Institute of Health

  • OIST PhD Fellowship (2012-2017)

    Okinawa Institute of Science & Technology, Japan

  • Royal Dutch Shell Oil Company Scholarship (2007-2011)

    Shell Oil Company

More activity by Faisal

View Faisal’s full profile

  • See who you know in common
  • Get introduced
  • Contact Faisal directly
Join to view full profile

Explore collaborative articles

We’re unlocking community knowledge in a new way. Experts add insights directly into each article, started with the help of AI.

Explore More

Others named Faisal Mahmood in United States

Add new skills with these courses