Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Nov 1;447(3):371-9.
doi: 10.1042/BJ20120705.

Coupling of ryanodine receptor 2 and voltage-dependent anion channel 2 is essential for Ca²+ transfer from the sarcoplasmic reticulum to the mitochondria in the heart

Affiliations

Coupling of ryanodine receptor 2 and voltage-dependent anion channel 2 is essential for Ca²+ transfer from the sarcoplasmic reticulum to the mitochondria in the heart

Choon Kee Min et al. Biochem J. .

Abstract

The structural proximity and functional coupling between the SR (sarcoplasmic reticulum) and mitochondria have been suggested to occur in the heart. However, the molecular architecture involved in the SR-mitochondrial coupling remains unclear. In the present study, we performed various genetic and Ca2+-probing studies to resolve the proteins involved in the coupling process. By using the bacterial 2-hybrid, glutathione transferase pull-down, co-immunoprecipitation and immunocytochemistry assays, we found that RyR2 (ryanodine receptor type 2), which is physically associated with VDAC2 (voltage-dependent anion channel 2), was co-localized in SR-mitochondrial junctions. Furthermore, a fractionation study revealed that VDAC2 was co-localized with RyR2 only in the subsarcolemmal region. VDAC2 knockdown by targeted short hairpin RNA led to an increased diastolic [Ca2+] (calcium concentration) and abolishment of mitochondrial Ca2+ uptake. Collectively, the present study suggests that the coupling of VDAC2 with RyR2 is essential for Ca2+ transfer from the SR to mitochondria in the heart.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Substances