Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Graphene membranes with pyridinic nitrogen at pore edges for high-performance CO2 capture

Abstract

Membranes based on a porous two-dimensional selective layer offer the potential to achieve exceptional performance to improve energy efficiency and reduce the cost for carbon capture. So far, separation from two-dimensional pores has exploited differences in molecular mass or size. However, competitive sorption of CO2 with the potential to yield high permeance and selectivity has remained elusive. Here we show that a simple exposure of ammonia to oxidized single-layer graphene at room temperature incorporates pyridinic nitrogen at the pore edges. This leads to a highly competitive but quantitatively reversible binding of CO2 with the pore. An attractive combination of CO2/N2 separation factor (average of 53) and CO2 permeance (average of 10,420) from a stream containing 20 vol% CO2 is obtained. Separation factors above 1,000 are achieved for dilute (~1 vol%) CO2 stream, making the membrane promising for carbon capture from diverse point emission sources. Thanks to the uniform and scalable chemistry, high-performance centimetre-scale membranes are demonstrated. The scalable preparation of high-performance two-dimensional membranes opens new directions in membrane science.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Uptake of CO2 on pyridinic-N-substituted graphene.
Fig. 2: Uptake of CO2 on pyridinic-N-substituted graphene.
Fig. 3: Quantitatively reversible CO2 sorption on pyridinic-N-substituted graphene.
Fig. 4: Confirmation of N functional groups in pyridinic-N-substituted graphene by EDS and Raman.
Fig. 5: CO2 adsorption and gas transport properties of pyridinic-N-substituted graphene.
Fig. 6: Competitive CO2 adsorption led to attractive carbon capture performance from pyridinic-N-substituted graphene.

Similar content being viewed by others

Data availability

The datasets are available in the article, Supplementary Information and the Source Data file. Source data are provided with this paper.

References

  1. Merkel, T. C., Lin, H., Wei, X. & Baker, R. Power plant post-combustion carbon dioxide capture: an opportunity for membranes. J. Membr. Sci. 359, 126–139 (2010).

    Article  Google Scholar 

  2. Han, Y. & Ho, W. S. W. Design of amine-containing CO2-selective membrane process for carbon capture from flue gas. Ind. Eng. Chem. Res. 59, 5340–5350 (2020).

    Article  Google Scholar 

  3. Micari, M., Dakhchoune, M. & Agrawal, K. V. Techno-economic assessment of postcombustion carbon capture using high-performance nanoporous single-layer graphene membranes. J. Membr. Sci. 624, 119103 (2021).

    Article  Google Scholar 

  4. Pang, R., Chen, K. K., Han, Y. & Ho, W. S. W. Highly permeable polyethersulfone substrates with bicontinuous structure for composite membranes in CO2/N2 separation. J. Membr. Sci. 612, 118443 (2020).

    Article  Google Scholar 

  5. Zhang, Z., Rao, S., Han, Y., Pang, R. & Ho, W. S. W. CO2-selective membranes containing amino acid salts for CO2/N2 separation. J. Membr. Sci. 638, 119696 (2021).

    Article  Google Scholar 

  6. Fu, Y. et al. Ultra-thin enzymatic liquid membrane for CO2 separation and capture. Nat. Commun. 9, 990 (2018).

    Article  Google Scholar 

  7. Ghalei, B. et al. Enhanced selectivity in mixed matrix membranes for CO2 capture through efficient dispersion of amine-functionalized MOF nanoparticles. Nat. Energy 2, 17086 (2017).

    Article  Google Scholar 

  8. Qiao, Z. et al. Metal-induced ordered microporous polymers for fabricating large-area gas separation membranes. Nat. Mater. 18, 163–168 (2018).

    Article  Google Scholar 

  9. Zhou, F. et al. Ultrathin graphene oxide-based hollow fiber membranes with brush-like CO2-philic agent for highly efficient CO2 capture. Nat. Commun. 8, 2107 (2017).

    Article  Google Scholar 

  10. Chen, T.-Y., Deng, X., Lin, L.-C. & Ho, W. S. W. New sterically hindered polyvinylamine-containing membranes for CO2 capture from flue gas. J. Membr. Sci. 645, 120195 (2022).

    Article  Google Scholar 

  11. Han, Y. & Ho, W. S. W. Mitigated carrier saturation of facilitated transport membranes for decarbonizing dilute CO2 sources: an experimental and techno-economic study. J. Membr. Sci. Lett. 2, 100014 (2022).

    Article  Google Scholar 

  12. Marius, S. et al. An integrated materials approach to ultrapermeable and ultraselective CO2 polymer membranes. Science 376, 90–94 (2022).

    Article  Google Scholar 

  13. Moreno, C. et al. Bottom-up synthesis of multifunctional nanoporous graphene. Science 360, 199–203 (2018).

    Article  Google Scholar 

  14. Zeng, Y. et al. Irreversible synthesis of an ultrastrong two-dimensional polymeric material. Nature 602, 91–95 (2022).

    Article  Google Scholar 

  15. Jeon, M. Y. et al. Ultra-selective high-flux membranes from directly synthesized zeolite nanosheets. Nature 543, 690–694 (2017).

    Article  Google Scholar 

  16. Lin, L. C. & Grossman, J. C. Atomistic understandings of reduced graphene oxide as an ultrathin-film nanoporous membrane for separations. Nat. Commun. 6, 8335 (2015).

    Article  Google Scholar 

  17. Sun, P. Z. et al. Limits on gas impermeability of graphene. Nature 579, 229–232 (2020).

    Article  Google Scholar 

  18. Kidambi, P. R., Chaturvedi, P. & Moehring, N. K. Subatomic species transport through atomically thin membranes: present and future applications. Science 374, eabd7687 (2021).

    Article  Google Scholar 

  19. Turchanin, A. & Gölzhäuser, A. Carbon nanomembranes. Adv. Mater. 28, 6075–6103 (2016).

    Article  Google Scholar 

  20. Epsztein, R., DuChanois, R. M., Ritt, C. L., Noy, A. & Elimelech, M. Towards single-species selectivity of membranes with subnanometre pores. Nat. Nanotechnol. 15, 426–436 (2020).

    Article  Google Scholar 

  21. Tu, Y. M. et al. Rapid fabrication of precise high-throughput filters from membrane protein nanosheets. Nat. Mater. 19, 347–354 (2020).

    Article  Google Scholar 

  22. Jiang, D., Cooper, V. R. & Dai, S. Porous graphene as the ultimate membrane for gas separation. Nano Lett. 9, 4019–4024 (2009).

    Article  Google Scholar 

  23. Koenig, S. P., Wang, L., Pellegrino, J. & Bunch, J. S. Selective molecular sieving through porous graphene. Nat. Nanotechnol. 7, 728–732 (2012).

    Article  Google Scholar 

  24. Surwade, S. P. et al. Water desalination using nanoporous single-layer graphene. Nat. Nanotechnol. 10, 459–464 (2015).

    Article  Google Scholar 

  25. Cheng, C., Iyengar, S. A. & Karnik, R. Molecular size-dependent subcontinuum solvent permeation and ultrafast nanofiltration across nanoporous graphene membranes. Nat. Nanotechnol. 16, 989–995 (2021).

    Article  Google Scholar 

  26. Wang, L. et al. Fundamental transport mechanisms, fabrication and potential applications of nanoporous atomically thin membranes. Nat. Nanotechnol. 12, 509–522 (2017).

    Article  Google Scholar 

  27. Yuan, Z. et al. Mechanism and prediction of gas permeation through sub-nanometer graphene pores: comparison of theory and simulation. ACS Nano 11, 7974–7987 (2017).

    Article  Google Scholar 

  28. Thiruraman, J. P. et al. Gas flow through atomic-scale apertures. Sci. Adv. 6, 4–11 (2020).

    Article  Google Scholar 

  29. Celebi, K. et al. Ultimate permeation across atomically thin porous graphene. Science 344, 289–292 (2014).

    Article  Google Scholar 

  30. Villalobos, L. F., Babu, D. J., Hsu, K., Van Goethem, C. & Agrawal, K. V. Gas separation membranes with atom-thick nanopores: the potential of nanoporous single-layer graphene. Acc. Mater. Res. 3, 1073–1087 (2022).

    Article  Google Scholar 

  31. Blankenburg, S. et al. Porous graphene as an atmospheric nanofilter. Small 6, 2266–2271 (2010).

    Article  Google Scholar 

  32. Sun, C., Wen, B. & Bai, B. Application of nanoporous graphene membranes in natural gas processing: molecular simulations of CH4/CO2, CH4/H2S and CH4/N2 separation. Chem. Eng. Sci. 138, 616–621 (2015).

    Article  Google Scholar 

  33. Yuan, Z. et al. Direct chemical vapor deposition synthesis of porous single‐layer graphene membranes with high gas permeances and selectivities. Adv. Mater. https://doi.org/10.1002/adma.202104308 (2021).

  34. Sun, P. Z. et al. Exponentially selective molecular sieving through angstrom pores. Nat. Commun. 12, 7170 (2021).

    Article  Google Scholar 

  35. McDonald, T. M. et al. Cooperative insertion of CO2 in diamine-appended metal-organic frameworks. Nature 519, 303–308 (2015).

    Article  Google Scholar 

  36. Carreon, M. A., Li, S., Falconer, J. L. & Noble, R. D. Alumina-supported SAPO-34 membranes for CO2/CH4 separation. J. Am. Chem. Soc. 130, 5412–5413 (2008).

    Article  Google Scholar 

  37. Luan, B. et al. Crown nanopores in graphene for CO2 capture and filtration. ACS Nano 16, 6274–6281 (2022).

    Article  Google Scholar 

  38. Wu, T. et al. Fluorine-modified porous graphene as membrane for CO2/N2 separation: molecular dynamic and first-principles simulations. J. Phys. Chem. C 118, 7369–7376 (2014).

    Article  Google Scholar 

  39. Lim, G., Lee, K. B. & Ham, H. C. Effect of N-containing functional groups on CO2 adsorption of carbonaceous materials: a density functional theory approach. J. Phys. Chem. C 120, 8087–8095 (2016).

    Article  Google Scholar 

  40. Zhao, Y., Liu, X., Yao, K. X., Zhao, L. & Han, Y. Superior capture of CO2 achieved by introducing extra-framework cations into N-doped microporous carbon. Chem. Mater. 24, 4725–4734 (2012).

    Article  Google Scholar 

  41. Wang, W. W., Dang, J. S., Zhao, X. & Nagase, S. Formation mechanisms of graphitic-N: oxygen reduction and nitrogen doping of graphene oxides. J. Phys. Chem. C 120, 5673–5681 (2016).

    Article  Google Scholar 

  42. Huang, S. et al. Millisecond lattice gasification for high-density CO2- and O2-sieving nanopores in single-layer graphene. Sci. Adv. 7, eabf0116 (2021).

    Article  Google Scholar 

  43. Hsu, K.-J. et al. Multipulsed millisecond ozone gasification for predictable tuning of nucleation and nucleation-decoupled nanopore expansion in graphene for carbon capture. ACS Nano 15, 13230–13239 (2021).

    Article  Google Scholar 

  44. Li, S. et al. Structure evolution of graphitic surface upon oxidation: insights by scanning tunneling microscopy. JACS Au 2, 723–730 (2022).

    Article  Google Scholar 

  45. Lee, W. et al. Enhanced water evaporation from Å-scale graphene nanopores. ACS Nano 16, 15382–15396 (2022).

    Article  Google Scholar 

  46. Huang, S. et al. In situ nucleation‐decoupled and site‐specific incorporation of Å‐scale pores in graphene via epoxidation. Adv. Mater. https://doi.org/10.1002/adma.202206627 (2022).

  47. Li, X. et al. Simultaneous nitrogen doping and reduction of graphene oxide. J. Am. Chem. Soc. 131, 15939–15944 (2009).

    Article  Google Scholar 

  48. He, W., Jiang, C., Wang, J. & Lu, L. High-rate oxygen electroreduction over graphitic-N species exposed on 3D hierarchically porous nitrogen-doped carbons. Angew. Chem. Int. Ed. 53, 9503–9507 (2014).

    Article  Google Scholar 

  49. Compton, O. C., Dikin, D. A., Putz, K. W., Brinson, L. C. & Nguyen, S. T. Electrically conductive ‘alkylated’ graphene paper via chemical reduction of amine-functionalized graphene oxide paper. Adv. Mater. 22, 892–896 (2010).

    Article  Google Scholar 

  50. Lim, C.-H., Holder, A. M. & Musgrave, C. B. Mechanism of homogeneous reduction of CO2 by pyridine: proton relay in aqueous solvent and aromatic stabilization. J. Am. Chem. Soc. 135, 142–154 (2013).

    Article  Google Scholar 

  51. Lao, M. et al. Platinum/nickel bicarbonate heterostructures towards accelerated hydrogen evolution under alkaline conditions. Angew. Chem. Int. Ed. 58, 5432–5437 (2019).

    Article  Google Scholar 

  52. Bezerra, D. P. et al. CO2 adsorption in amine-grafted zeolite 13X. Appl. Surf. Sci. 314, 314–321 (2014).

    Article  Google Scholar 

  53. Navaee, A. & Salimi, A. Efficient amine functionalization of graphene oxide through the Bucherer reaction: an extraordinary metal-free electrocatalyst for the oxygen reduction reaction. RSC Adv. 5, 59874–59880 (2015).

    Article  Google Scholar 

  54. Tian, K. et al. Single-site pyrrolic-nitrogen-doped sp2-hybridized carbon materials and their pseudocapacitance. Nat. Commun. 11, 3884 (2020).

    Article  Google Scholar 

  55. Choi, S., Drese, J. H. & Jones, C. W. Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. ChemSusChem 2, 796–854 (2009).

    Article  Google Scholar 

  56. Vacchi, I. A., Spinato, C., Raya, J., Bianco, A. & Ménard-Moyon, C. Chemical reactivity of graphene oxide towards amines elucidated by solid-state NMR. Nanoscale 8, 13714–13721 (2016).

    Article  Google Scholar 

  57. Johns, J. E. & Hersam, M. C. Atomic covalent functionalization of graphene. Acc. Chem. Res. 46, 77–86 (2013).

    Article  Google Scholar 

  58. Wang, Q. H. et al. Understanding and controlling the substrate effect on graphene electron-transfer chemistry via reactivity imprint lithography. Nat. Chem. 4, 724–732 (2012).

    Article  Google Scholar 

  59. Ferrari, A. C. & Basko, D. M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 8, 235–246 (2013).

    Article  Google Scholar 

  60. Huang, S. et al. Single-layer graphene membranes by crack-free transfer for gas mixture separation. Nat. Commun. 9, 2632 (2018).

    Article  Google Scholar 

  61. Dakhchoune, M. et al. Rapid gas transport from block-copolymer templated nanoporous carbon films. Ind. Eng. Chem. Res. 60, 16100–16108 (2021).

    Article  Google Scholar 

  62. Wang, Z. et al. N-doped porous carbon derived from polypyrrole for CO2 capture from humid flue gases. Chem. Eng. J. 396, 125376 (2020).

    Article  Google Scholar 

  63. Yang, C. et al. Facile preparation of N-doped porous carbon from chitosan and NaNH2 for CO2 adsorption and conversion. Chem. Eng. J. 432, 134347 (2022).

    Article  Google Scholar 

  64. Jiao, Y., Zheng, Y., Smith, S. C., Du, A. & Zhu, Z. Electrocatalytically switchable CO2 Capture: first principle computational exploration of carbon nanotubes with pyridinic nitrogen. ChemSusChem 7, 435–441 (2014).

    Article  Google Scholar 

  65. Datta, S. J. et al. Rational design of mixed-matrix metal-organic framework membranes for molecular separations. Science 376, 1080–1087 (2022).

    Article  Google Scholar 

  66. Jones, C. W. & Koros, W. J. Carbon molecular sieve gas separation membranes-II. regeneration following organic exposure. Carbon 32, 1427–1432 (1994).

    Article  Google Scholar 

  67. Baker, R. W., Freeman, B., Kniep, J., Huang, Y. I. & Merkel, T. C. CO2 capture from cement plants and steel mills using membranes. Ind. Eng. Chem. Res. 57, 15963–15970 (2018).

    Article  Google Scholar 

  68. Roussanaly, S., Anantharaman, R., Lindqvist, K., Zhai, H. & Rubin, E. Membrane properties required for post-combustion CO2 capture at coal-fired power plants. J. Membr. Sci. 511, 250–264 (2016).

    Article  Google Scholar 

  69. Giordano, L., Roizard, D., Bounaceur, R. & Favre, E. Evaluating the effects of CO2 capture benchmarks on efficiency and costs of membrane systems for post-combustion capture: a parametric simulation study. Int. J. Greenhouse Gas Control 63, 449–461 (2017).

    Article  Google Scholar 

  70. Wang, X. & Song, C. Carbon capture from flue gas and the atmosphere: a perspective. Front. Energy Res. 8, 560849 (2020).

    Article  Google Scholar 

  71. Villalobos, L. F. et al. Polybenzimidazole copolymer derived lacey carbon film for graphene transfer and contamination removal strategies for imaging graphene nanopores. Carbon 173, 980–988 (2021).

    Article  Google Scholar 

  72. Horcas, I. et al. WSXM: a software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 78, 013705 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the host institution École Polytechnique Fédérale de Lausanne (EPFL) for generous support. K.V.A. is thankful to Gaznat AG for funding the project. K.V.A. would also like to thank Swiss National Science Foundation Assistant Professor Energy Grant (PYAPP2_173645), European Research Council Starting Grant (805437-UltimateMembranes) and Swiss National Science Foundation Project (200021_192005) for funding parts of this project. K.-J.H. would like to thank the joint EPFL-Taiwan Scholarship programme for the PhD grant.

Author information

Authors and Affiliations

Authors

Contributions

K.V.A. and K.-J.H. conceived the project and wrote the manuscript. K.-J.H. prepared the samples for the membrane testing, XPS, Raman, SEM, HRTEM and STM. K.-J.H. and L.Z. performed the XPS measurement. K.-J.H., H.-Y.C. and X.D. collected SEM data. H.-Y.C. and L.F.V. collected the AC-HRTEM images. K.-J.H. carried out the modelling of the transport. S.L. collected the STM data. K.-J.H., S.H. and S.S. developed support layers. M.M. performed the techno-economic analysis. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Kumar Varoon Agrawal.

Ethics declarations

Competing interests

A patent application (European patent application EP22206687 (2022)) based on the findings of the work has been filed.

Peer review

Peer review information

Nature Energy thanks Simon Smart and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–39, Notes 1–7 and Tables 1–13.

Supplementary Video 1

The movie of pyridinic-N-substituted graphene exposed under electron beams.

Supplementary Video 2

The movie of pyridinic-N-substituted graphene exposed under electron beams.

Supplementary Data 1

The supplementary data for calculating average and standard deviation.

Source data

Source Data Fig. 5

The source data for Fig. 5.

Source Data Fig. 6

The source data for Fig. 6.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hsu, KJ., Li, S., Micari, M. et al. Graphene membranes with pyridinic nitrogen at pore edges for high-performance CO2 capture. Nat Energy (2024). https://doi.org/10.1038/s41560-024-01556-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41560-024-01556-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing