Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Matters Arising
  • Published:

Limits on modelling the thermal sensitivity of Wolbachia

The Original Article was published on 03 August 2023

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Vásquez, V. N., Kueppers, L. M., Rašić, G. & Marshall, J. M. wMel replacement of dengue-competent mosquitoes is robust to near-term change. Nat. Clim. Change 13, 848–855 (2023).

    Article  Google Scholar 

  2. Utarini, A. et al. Efficacy of Wolbachia-infected mosquito deployments for the control of dengue. N. Engl. J. Med. 384, 2177–2186 (2021).

    Article  Google Scholar 

  3. Ross, P. A. et al. Wolbachia infections in Aedes aegypti differ markedly in their response to cyclical heat stress. PLoS Pathog. 13, e1006006 (2017).

    Article  Google Scholar 

  4. Ulrich, J. N., Beier, J. C., Devine, G. J. & Hugo, L. E. Heat sensitivity of wMel Wolbachia during Aedes aegypti development. PLoS Negl. Trop. Dis. 10, e0004873 (2016).

    Article  Google Scholar 

  5. Ross, P. A., Ritchie, S. A., Axford, J. K. & Hoffmann, A. A. Loss of cytoplasmic incompatibility in Wolbachia-infected Aedes aegypti under field conditions. PLoS Negl. Trop. Dis. 13, e0007357 (2019).

    Article  Google Scholar 

  6. Hien, N. T. et al. Environmental factors influence the local establishment of Wolbachia in Aedes aegypti mosquitoes in two small communities in central Vietnam. Gates Open Res. 5, 147 (2021).

    Article  Google Scholar 

  7. Allman, M. J. et al. Wolbachia’s deleterious impact on Aedes aegypti egg development: the potential role of nutritional parasitism. Insects 11, 735 (2020).

    Article  Google Scholar 

  8. Garcia, G. d. A. et al. Matching the genetics of released and local Aedes aegypti populations is critical to assure Wolbachia invasion. PLoS Negl. Trop. Dis. 13, e0007023 (2019).

    Article  Google Scholar 

  9. Gesto, J. S. M. et al. Large-scale deployment and establishment of Wolbachia into the Aedes aegypti population in Rio de Janeiro, Brazil. Front. Microbiol. 12, 711107 (2021).

    Article  Google Scholar 

  10. Turelli, M. & Hoffmann, A. A. Rapid spread of an inherited incompatibility factor in California Drosophila. Nature 353, 440–442 (1991).

    Article  CAS  Google Scholar 

  11. Jørgensen, L. B., Malte, H., Ørsted, M., Klahn, N. A. & Overgaard, J. A unifying model to estimate thermal tolerance limits in ectotherms across static, dynamic and fluctuating exposures to thermal stress. Sci. Rep. 11, 12840 (2021).

    Article  Google Scholar 

  12. Ross, P. A. & Hoffmann, A. A. Continued susceptibility of the wMel Wolbachia infection in Aedes aegypti to heat stress following field deployment and selection. Insects 9, 78 (2018).

    Article  Google Scholar 

  13. Richardson, K. M., Hoffmann, A. A., Johnson, P., Ritchie, S. R. & Kearney, M. R. A replicated comparison of breeding-container suitability for the dengue vector Aedes aegypti in tropical and temperate Australia. Austral. Ecol. 38, 219–229 (2013).

    Article  Google Scholar 

  14. Ross, P. A., Turelli, M. & Hoffmann, A. A. Evolutionary ecology of Wolbachia releases for disease control. Annu. Rev. Genet. 53, 93–116 (2019).

    Article  CAS  Google Scholar 

  15. Kearney, M., Porter, W. P., Williams, C., Ritchie, S. & Hoffmann, A. A. Integrating biophysical models and evolutionary theory to predict climatic impacts on species’ ranges: the dengue mosquito Aedes aegypti in Australia. Funct. Ecol. 23, 528–538 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

P.A.R. was supported by an Australian Research Council Discovery Early Career Researcher Award (DE230100067) funded by the Australian Government. A.A.H. was supported by Wellcome Trust awards (108508, 226166).

Author information

Authors and Affiliations

Authors

Contributions

P.A.R. wrote the first draft of the manuscript. A.A.H. and P.A.R. revised the manuscript.

Corresponding author

Correspondence to Perran A. Ross.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Climate Change thanks Eric Caragata, Penny Hancock and Elizabeth McGraw for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ross, P.A., Hoffmann, A.A. Limits on modelling the thermal sensitivity of Wolbachia. Nat. Clim. Chang. (2024). https://doi.org/10.1038/s41558-024-02062-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41558-024-02062-7

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology