Skip to main content

Advertisement

Log in

Sex Dimorphic Glucose Transporter-2 Regulation of Hypothalamic Astrocyte Glucose and Energy Sensor Expression and Glycogen Metabolism

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The plasma membrane glucose transporter-2 (GLUT2) monitors brain cell uptake of the critical nutrient glucose, and functions within astrocytes of as-yet-unknown location to control glucose counter-regulation. Hypothalamic astrocyte-neuron metabolic coupling provides vital cues to the neural glucostatic network. Current research utilized an established hypothalamic primary astrocyte culture model along with gene knockdown tools to investigate whether GLUT2 imposes sex-specific regulation of glucose/energy sensor function and glycogen metabolism in this cell population. Data show that GLUT2 stimulates or inhibits glucokinase (GCK) expression in glucose-supplied versus -deprived male astrocytes, but does not control this protein in female. Astrocyte 5’-AMP-activated protein kinaseα1/2 (AMPK) protein is augmented by GLUT2 in each sex, but phosphoAMPKα1/2 is coincidently up- (male) or down- (female) regulated. GLUT2 effects on glycogen synthase (GS) diverges in the two sexes, but direction of this control is reversed by glucoprivation in each sex. GLUT2 increases (male) or decreases (female) glycogen phosphorylase-brain type (GPbb) protein during glucoprivation, yet simultaneously inhibits (male) or stimulates (female) GP-muscle type (GPmm) expression. Astrocyte glycogen accumulation is restrained by GLUT2 when glucose is present (male) or absent (both sexes). Outcomes disclose sex-dependent GLUT2 control of the astrocyte glycolytic pathway sensor GCK. Data show that glucose status determines GLUT2 regulation of GS (both sexes), GPbb (female), and GPmm (male), and that GLUT2 imposes opposite control of GS, GPbb, and GPmm profiles between sexes during glucoprivation. Ongoing studies aim to investigate molecular mechanisms underlying sex-dimorphic GLUT2 regulation of hypothalamic astrocyte metabolic-sensory and glycogen metabolic proteins, and to characterize effects of sex-specific astrocyte target protein responses to GLUT2 on glucose regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Abbreviations

AMPK:

5’-AMP-activated protein kinaseα1/2.

CNS:

central nervous system.

GCK:

glucokinase.

GKRP:

glucokinase regulatory protein.

GLUT2:

glucose transporter-2.

GPbb:

glycogen phosphorylase-brain type.

GPmm:

glycogen phosphorylase-muscle type.

GS:

glycogen synthase.

LC-ESI-MS:

uHPLC-electrospray ionization-mass spectrometry.

pAMPK:

phosphoAMPKα1/2.

References

  1. Thorens B, Mueckler M (2010) Glucose transporters in the 21st century. Amer J Physiol Endocrinol Metab 298:E141–E145. doi: https://doi.org/10.1152/ajpendo.00712.2009

    Article  CAS  Google Scholar 

  2. Wood IS, Trayhurn P (2003) Glucose transporters (GLUT and SGLT): expanded families of sugar transport proteins. Brit J Nutr 89:3–9. doi: https://doi.org/10.1079/BJN2002763

    Article  CAS  Google Scholar 

  3. Holman GD (2020) Structure, function, and regulation of mammalian glucose transporters of the SLC2 family. Pflügers Archiv - Eur J Physiol 472:1155–1175. doi: https://doi.org/10.1007/s00424-020-02411-3

    Article  CAS  Google Scholar 

  4. Mueckler M, Thorens B (2013) The SLC2 (GLUT) family of membrane transporters. Mol Aspects Med 34:121–138. doi: https://doi.org/10.1016/j.mam.2012.07.001

    Article  CAS  Google Scholar 

  5. Arluison M, Quignon M, Nguyen P, Thorens B, Leloup C, Penicaud L (2004) Distribution and anatomical localization of the glucose transporter 2 (GLUT2) in the adult rat brain–an immunohistochemical study. J Chem Neuroanat 28(3):117–136. doi: https://doi.org/10.1016/j.jchemneu.2004.05.009

    Article  CAS  Google Scholar 

  6. Mounien L, Marty N, Tarussio D, Metref S, Genoux D, Preitner F, Foretz M, Thorens B (2010) Glut2-dependent glucose-sensing controls thermoregulation by enhancing the leptin sensitivity of NPY and POMC neurons. FASEB J 24:1747–1758. doi: https://doi.org/10.1096/fj.09-144923

    Article  CAS  Google Scholar 

  7. Marty N, Dallaporta M, Foretz M, Emery M, Tarussio D, Bady I, Binnert C, Beermann F, Thorens B (2005) Regulation of glucagon secretion by glucose transporter type 2 (GLUT2) and astrocyte-dependent glucose sensors. J Clin Invest 115:3543–3553. doi: https://doi.org/10.1172/JCI26309

    Article  CAS  Google Scholar 

  8. Stobart JL, Anderson CM (2013) Multifunctional role of astrocytes as gatekeepers of neuronal energy supply. Cell Neurosci 7:1–21. doi: https://doi.org/10.3389/fncel.2013.00038

    Article  CAS  Google Scholar 

  9. Argente-Arizón P, Guerra-Cantera S, Garcia-Segura LM, Argente J, Chowen JA (2017) Glial cells and energy balance. J Mol Endocrinol 58:R59–R71. doi: https://doi.org/10.1530/JME-16-0182

    Article  Google Scholar 

  10. Douglass JD, Dorfman MD, Thaler JPI (2017) Glia: silent partners in energy homeostasis and obesity pathogenesis. Diabetologia 60:226–236. doi: https://doi.org/10.1007/s00125-016-4181-3

    Article  CAS  Google Scholar 

  11. MacDonald AJ, Robb JL, Morrissey NA, Beall C, Ellacott KLJ (2019) Astrocytes in neuroendocrine systems: An overview. J Neuroendocrinol 31:e12726. doi: https://doi.org/10.1111/jne.12726

    Article  CAS  Google Scholar 

  12. Zhou YD (2018) Glial Regulation of Energy Metabolism. Adv Exp Med Biol 1090:105–121. doi: https://doi.org/10.1007/978-981-13-1286-1_6

    Article  CAS  Google Scholar 

  13. Ibrahim MMH, Alhamami HN, Briski KP (2019) Norepinephrine regulation of ventromedial hypothalamic nucleus metabolic transmitter biomarker and astrocyte enzyme and receptor expression: impact of 5’-AMP-activated protein kinase. Brain Res 1711:48–57. doi: https://doi.org/10.1016/j.brainres.2019.01.012

    Article  CAS  Google Scholar 

  14. Mahmood ASMH, Bheemanapally K, Mandal SK, Ibrahim MMH, Briski KP (2019) Norepinephrine control of ventromedial hypothalamic nucleus glucoregulatory neurotransmitter expression in the female rat: role of monocarboxylate transporter function. Mol Cell Neurosci 95:51–58. doi: https://doi.org/10.1016/j.mcn.2019.01.004

    Article  CAS  Google Scholar 

  15. Bheemanapally K, Alhamyani AR, Ibrahim MMH, Briski KP (2021) Ventromedial hypothalamic nucleus glycogen phosphorylase regulation of metabolic-sensory neuron AMPK and neurotransmitter protein expression: Role of L-lactate. Amer J Physiol Regul Integr Comp Physiol 320:R791–R799. doi: https://doi.org/10.1152/ajpregu.00292.2020

    Article  CAS  Google Scholar 

  16. Fuente-Martín E, García-Cáceres C, Argente-Arizón P, Díaz F, Granado M, Freire-Regatillo A, Castro-González D, Ceballos ML, Frago LM, Dickson SL, Argente J, Chowen JA (2016) Ghrelin regulates glucose and glutamate transporters in hypothalamic astrocytes. Sci Rep 6:23673. doi: https://doi.org/10.1038/srep23673

    Article  CAS  Google Scholar 

  17. Ibrahim MMH, Bheemanapally K, Sylvester PW, Briski KP (2020) Sex-specific estrogen regulation of hypothalamic astrocyte estrogen receptor expression and glycogen metabolism in rats. Mol Cell Endocrinol 504:110703. doi: https://doi.org/10.1016/j.mce.2020.110703

    Article  CAS  Google Scholar 

  18. Ibrahim MMH, Bheemanapally K, Sylvester PW, Briski KP (2020) Sex differences in glucoprivic regulation of glycogen metabolism in hypothalamic primary astrocyte cultures: role of estrogen receptor signaling. Mol Cell Endocrinol 518:111000. https://doi.org/10.1016/j.mce.2020.111000

    Article  CAS  Google Scholar 

  19. Ibrahim MMH, Bheemanapally K, Sylvester PW, Briski KP (2020) Norepinephrine regulation of adrenergic receptor expression, 5’ AMP-activated protein kinase activity, and glycogen metabolism and mass in male versus female hypothalamic primary astrocyte cultures. ASN Neuro 12:1759091420974134. doi: https://doi.org/10.1177/1759091420974134

    Article  CAS  Google Scholar 

  20. Matschinsky FM, Wilson DF (2019) The central role of glucokinase in glucose homeostasis; a perspective 50 years after demonstrating the presence of the enzyme in islets of Langerhans. Front Physiol. doi: https://doi.org/10.3389/fphys.2019.00148

    Article  Google Scholar 

  21. Nadeau OW, Fontes JD, Carlson GM (2018) The regulation of glycogenolysis in the brain. J Biol Chem 293:7099–7107. doi: https://doi.org/10.1074/jbc.r117.803023

    Article  CAS  Google Scholar 

  22. Alhamyani AR, Napit PR, Bheemanapally K, Ibrahim MMH, Sylvester PW, Briski KP (2022) Glycogen phosphorylase isoform regulation of glucose and energy sensor expression in male versus female hypothalamic astrocyte primary cultures. Mol Cell Endocrinol 111698. doi: https://doi.org/10.1016/j.mce.2022.111698

  23. Müller MS, Pedersen S, Walls AB, Waagepetersen HS, Bak LK (2014) Isoform-selective regulation of glycogen phosphorylase by energy deprivation and phosphorylation in astrocytes. Glia 63:154–162. doi:https://doi.org/10.1002/glia.22741

    Article  Google Scholar 

  24. Agius L (2008) Glucokinase and molecular aspects of liver glycogen metabolism. Biochem J 414: -18. doi: https://doi.org/10.1042/BJ20080595

  25. Agius L (2016) Hormonal and metabolite regulation of hepatic glucokinase. Annu Rev Nutr 36:389–415. doi: https://doi.org/10.1146/annurev-nutr-071715-051145

    Article  CAS  Google Scholar 

  26. Sternisha SM, Miller BG (2019) Molecular and cellular regulation of human glucokinase. Arch Biochem Biophys 663:299–213. doi: https://doi.org/10.1016/j.abb.2019.01.011

    Article  CAS  Google Scholar 

  27. Alvarez E, Roncero I, Chowe1n JA, Vasquez P, Blazquez E (2002) Evidence that glucokinase regulatory protein is expressed and interacts with glucokinase in rat brain. J Neurochem 80:45–53. doi: https://doi.org/10.1046/j.0022-3042.2001.00677.x

    Article  CAS  Google Scholar 

  28. Roncero I, Sanz C, Alvarez E, Vázquez P, Barrio PA, Blázquez E, de la Iglesia N, de Veiga M, Van Schaftingen E, Guinovart JJ, Ferrer JC (2009) (1999) Glucokinase regulatory protein is essential for the proper subcellular localization of liver glucokinase. FEBS Lett. 456:332–338. doi: 10.1016/S0014-5793(99)00971-0

  29. Bheemanapally K, Ibrahim MMH, Briski KP (2020) Combinatory high-resolution microdissection/ultra-performance liquid chromatographic-mass spectrometry approach for small tissue volume analysis of rat brain glycogen. J Pharmaceut Biomed Anal 178:112884. doi: https://doi.org/10.1016/j.jpba.2019.112884

    Article  CAS  Google Scholar 

  30. Leloup C, Allard C, Carneiro L, Fioramonti X, Collins S, Penicaud L (2016) Glucose and hypothalamic astrocytes: more than a fueling role? Neuroscience 323:110–120. doi: https://doi.org/10.1016/j.neuroscience.2015.06.007

    Article  CAS  Google Scholar 

  31. Watts AG, Donovan CM (2010) Sweet talk in the brain: Glucosensing, neural networks, and hypoglycemic counterregulation. Front Neuroendocrinol 31:32–43. doi:https://doi.org/10.1016/j.yfrne.2009.10.006

    Article  CAS  Google Scholar 

  32. Guillemain G, Loizeau M, Pinçon-Raymond M, Girard J, Leturque A (2000) The large intracytoplasmic loop of the glucose transporter GLUT2 is involved in glucose signaling in hepatic cells. J Cell Sci 113:841–847. doi: https://doi.org/10.1242/jcs.113.5.841

    Article  CAS  Google Scholar 

  33. Stolarczyk E, Guissard C, Michau A, Even PC, Grosfeld A, Serradas P, Lorsignol A, Pénicaud L, Brot-Laroche E, Leturque A, Le Gall M, Walencewicz A, Levine M, Churchill Bohn M (2010) (1990) Type II glucocorticoid receptors are expressed in oligodendrocytes and astrocytes. J Neurosci Res 27:360–373

  34. Leloup C, Arluison M, Lepetit N, Cartier N, Marfaing-Jallat P, Ferre P, Penicaud L (1994) Glucose ransporter 2 (GLUT 2): expression in specific brain nuclei. Brain Res 638:221–226. doi: https://doi.org/10.1016/0006-8993(94)90653-x

    Article  CAS  Google Scholar 

  35. Jetton TL, Liang Y, Pettepher CC, Zimmerman EC, Cox FG, Horvath K, Matschinsky FM, Magnuson MA (1994) Analysis of upstream glucokinase promoter activity in transgenic mice and identification of glucokinase in rare neuroendocrine cells in the brain and gut. J Biol Chem 269:3641–3654

    Article  CAS  Google Scholar 

  36. Koespell H (2020) Glucose transporters in brain in health and disease. Pflugers Arch 472:1299–1343. doi: https://doi.org/10.1007/s00424-020-02441-x

    Article  CAS  Google Scholar 

  37. Swanson RA, Choi DW (1993) Glial Glycogen Stores Affect Neuronal Survival during Glucose Deprivation in Vitro. J Cereb Blood Flow Metab 13:162–169

    Article  CAS  Google Scholar 

  38. Ouyang YB, Xu LJ, Sun YJ, Giffard RG (2006) Overexpression of inducible heat shock protein 70 and its mutants in astrocytes is associated with maintenance of mitochondrial physiology during glucose deprivation stress. Cell Stress Chaperones 11:259–267

    Article  Google Scholar 

  39. Hernández-Fonseca K, Massieu L, García de la Cadena S, Guzmán C, Camacho-Arroyo I (2012) Neuroprotective role of estradiol against neuronal death induced by glucose deprivation in cultured rat hippocampal neurons. Neuroendocrinology 96:41��50

    Article  Google Scholar 

  40. Papadopoulos MC, Koumenis IL, Yuan TY, Giffard RG, Schildge S, Bohrer C, Beck K, Schachtrup (1998) JOVE 2013 (Jan 19); 50079. https://doi.org/10.3791/50079.

  41. Murat CB, García-Cáceres C (2021) Astrocyte gliotransmission in the regulation of systemic metabolism. Metabolites 11(11):732. doi: https://doi.org/10.3390/metabo11110732

    Article  CAS  Google Scholar 

  42. Bonvento G, Bolaños JP (2021) Astrocyte-neuron metabolic cooperation shapes brain activity. Cell Metab 33(8):1546–1564. doi: https://doi.org/10.1016/j.cmet.2021.07.006

    Article  CAS  Google Scholar 

  43. Beard E, Lengacher S, Dias S, Magistretti PJ, Finsterwald C (2022) Astrocytes as key regulators of brain energy metabolism: new therapeutic perspectives. Front Physiol 12:825816. doi: https://doi.org/10.3389/fphys.2021.825816

    Article  Google Scholar 

  44. Lanfray D, Arthaud S, Ouellet J, Compère V, Do Rego JL, Leprince J, Lefranc B, Castel H, Bouchard C, Monge-Roffarello B, Richard D, Pelletier G, Vaudry H, Tonon MC, Morin F (2013) Gliotransmission and brain glucose sensing: critical role of endozepines. Diabetes 62:801–810. doi: https://doi.org/10.2337/db11-0785

    Article  CAS  Google Scholar 

  45. Simpson IA, Carruthers A, Vannucci SJ (2007) Supply and demand in cerebral energy metabolism: the role of nutrient transporters. J Cereb Blood Flow Metab 27:1766–1791. doi: https://doi.org/10.1038/sj.jcbfm.9600521

    Article  CAS  Google Scholar 

  46. Lauritzen KH, Morland C, Puchades M, Holm-Hansen S, Hagelin EM, Lauritzen F, Attramadal H, Storm-Mathisen J, Gjedde A, Bergersen LH (2014) Lactate receptor sites link neurotransmission, neurovascular coupling, and brain energy metabolism. Cereb Cortex 24:2784–2795. doi: https://doi.org/10.1093/cercor/bht136

    Article  Google Scholar 

  47. Morland C, Lauritzen KH, Puchades M, Holm-Hansen S, Andersson K, Gjedde A, Attramadal H, Storm-Mathisen J, Bergersen LH (2015) The lactate receptor, G-protein-coupled receptor 81/hydroxycarboxylic acid receptor 1: Expression and action in brain. J Neurosci Res 93:1045–1055. doi: https://doi.org/10.1002/jnr.23593

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by NIH grant DK 109382.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen P. Briski.

Ethics declarations

CRediT Statement

Madhu Babu Pasula: conceptualization, investigation, formal analysis, validation, data curation, writing – original draft, writing – review and editing, visualization; Prabhat R. Napit: conceptualization, methodology; Abdulrahman Alhamyani: conceptualization, methodology; Khaggeswar Bheemanapally: methodology, software, formal analysis, validation, data curation, visualization; Paul W. Sylvester: Resources, Writing – Review and Editing; Karen P. Briski: conceptualization, writing – original draft, writing – review and editing, supervision, project administration, funding acquisition.

Statement of Ethics

Studies performed here were approved by the University of Louisiana Monroe Institutional Animal Care and Use Committee, reference no. 19AUG-KPB-01, in accordance with the National Institutes of Health (NIH) Guide for Care and Use of Laboratory Animals, 8th Edition.

Conflict of Interest

The authors have no conflicts interest to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pasula, M.B., Napit, P.R., Alhamyani, A. et al. Sex Dimorphic Glucose Transporter-2 Regulation of Hypothalamic Astrocyte Glucose and Energy Sensor Expression and Glycogen Metabolism. Neurochem Res 48, 404–417 (2023). https://doi.org/10.1007/s11064-022-03757-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-022-03757-z

Keywords

Navigation