Skip to main content
Log in

Pollutant Concentrations in Street Canyons of Different Aspect Ratio with Avenues of Trees for Various Wind Directions

  • Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

This study summarizes the effects of avenues of trees in urban street canyons on traffic pollutant dispersion. We describe various wind-tunnel experiments with different tree-avenue models in combination with variations in street-canyon aspect ratio W/H (with W the street-canyon width and H the building height) and approaching wind direction. Compared to tree-free street canyons, in general, higher pollutant concentrations are found. Avenues of trees do not suppress canyon vortices, although the air ventilation in canyons is hindered significantly. For a perpendicular wind direction, increases in wall-average and wall-maximum concentrations at the leeward canyon wall and decreases in wall-average concentrations at the windward wall are found. For oblique and perpendicular wind directions, increases at both canyon walls are obtained. The strongest effects of avenues of trees on traffic pollutant dispersion are observed for oblique wind directions for which also the largest concentrations at the canyon walls are found. Thus, the prevailing assumption that attributes the most harmful dispersion conditions to a perpendicular wind direction does not hold for street canyons with avenues of trees. Furthermore, following dimensional analysis, an estimate of the normalized wall-maximum traffic pollutant concentration in street canyons with avenues of trees is derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmad K, Khare M, Chaudhry KK (2005) Wind tunnel simulation studies on dispersion at urban street canyons and intersections—a review. J Wind Eng Ind Aerodyn 93: 697–717

    Article  Google Scholar 

  • Baik J, Kim J (1999) A numerical study of flow and pollutant dispersion characteristics in urban street canyons. J Appl Meteorol 38: 1576–1589

    Article  Google Scholar 

  • Baik J, Kim J (2002) On the escape of pollutants from urban street canyons. Atmos Environ 36: 527–536

    Article  Google Scholar 

  • Baik J, Park RS, Chun HY, Kim J (2000) A laboratory model of urban street-canyon flows. J Appl Meteorol 39: 1592–1600

    Article  Google Scholar 

  • Baik J, Kang YS, Kim J (2007) Modeling reactive pollutant dispersion in an urban street canyon. Atmos Environ 41: 934–949

    Article  Google Scholar 

  • Balczó M, Gromke C, Ruck B (2009) Numerical modeling of flow and pollutant dispersion in street canyons with tree planting. Meteorol Z 18: 197–206

    Article  Google Scholar 

  • Blocken B, Stathopoulos T, Saathoff P, Wang X (2008) Numerical evaluation of pollutant dispersion in the built environment: comparisons between models and experiments. J Wind Eng Ind Aerodyn 96: 1817–1831

    Article  Google Scholar 

  • Buccolieri R, Gromke C, Di Sabatino S, Ruck B (2009) Aerodynamic effects of trees on pollutant concentration in street canyons. Sci Total Environ 407: 5247–5256

    Article  Google Scholar 

  • Buccolieri R, Salim SM, Leo LS, Di Sabatino S, Chan A, Ielpo P, de Gennaro G, Gromke C (2011) Analysis of local scale tree-atmosphere interaction on pollutant concentration in idealized street canyons and application to a real urban junction. Atmos Environ 45: 1702–1713

    Article  Google Scholar 

  • CODASC (2008) Concentration Data of Street Canyons. Internet database. Karlsruhe Institute of Technology (KIT). www.codasc.de. Accessed 15 Jan 2012

  • DePaul FT, Sheih CM (1985) A tracer study of dispersion in an urban street canyon. Atmos Environ (1967) 19:555–559

    Google Scholar 

  • DePaul FT, Sheih CM (1986) Measurements of wind velocities in a street canyon. Atmos Environ (1967) 20:455–459

    Google Scholar 

  • Dezso-Weidinger G, Stitou A, van Beeck J, Riethmuller ML (2003) Measurement of the turbulent mass flux with PTV in a street canyon. J Wind Eng Ind Aerodyn 91: 1117–1131

    Article  Google Scholar 

  • Eliasson I, Offerle B, Grimmond CSB, Lindqvist S (2006) Wind fields and turbulence statistics in an urban street canyon. Atmos Environ 40: 1–16

    Article  Google Scholar 

  • Frank C, Ruck B (2005) Double-arranged mound-mounted shelterbelts: influence of porosity on wind reduction between the shelters. Environ Fluid Mech 5: 267–292

    Article  Google Scholar 

  • Gandemer J (1981) The Aerodynamic characteristics of windbreaks, resulting in empirical design rules. J Wind Eng Ind Aerodyn 7: 15–36

    Article  Google Scholar 

  • Grant PF, Nickling WG (1998) Direct field measurement of wind drag on vegetation for application of wind-break design and modeling. Land Degrad Dev 9: 57–66

    Article  Google Scholar 

  • Gromke C (2008) Einfluss von Bäumen auf die Durchlüftung von innerstädtischen Straßenschluchten. Dissertation, Universitätsverlag Karlsruhe, Karlsruhe, 142 pp

  • Gromke C (2011) A vegetation modeling concept for Building and Environmental Aerodynamics wind tunnel tests and its application in pollutant dispersion studies. Environ Pollut 159: 2094–2099

    Article  Google Scholar 

  • Gromke C, Ruck B (2005) Die Simulation atmosphärischer Grenzschichten in Windkanälen. In: Egbers C, Jehring L, Larcher T et al (eds) Lasermethoden in der Strömungsmesstechnik, vol 13. Cottbus, Germany, pp 51.1–51.8

  • Gromke C, Ruck B (2007) Influence of trees on the dispersion of pollutants in an urban street canyon—Experimental investigation of the flow and concentration field. Atmos Environ 41: 3287–3302

    Article  Google Scholar 

  • Gromke C, Ruck B (2008) Aerodynamic modeling of trees for small scale wind tunnel studies. Forestry 81: 243–258

    Article  Google Scholar 

  • Gromke C, Ruck B (2009a) Effects of trees on the dilution of vehicle exhaust emissions in urban street canyons. Int J Environ Waste Manag 4: 225–242

    Article  Google Scholar 

  • Gromke C, Ruck B (2009b) On the impact of trees on dispersion processes of traffic emissions in street canyons. Boundary-Layer Meteorol 131: 19–34

    Article  Google Scholar 

  • Gromke C, Buccolieri R, Di Sabatino S, Ruck B (2008) Dispersion modeling study in a street canyon with tree planting by means of wind tunnel and numerical investigations - Evaluation of CFD data with experimental data. Atmos Environ 42: 8640–8650

    Article  Google Scholar 

  • Gross G (1987) A numerical study of the air flow within and around a single tree. Boundary-Layer Meteorol 40: 311–327

    Article  Google Scholar 

  • Gross G (1997) ASMUS - Ein numerisches Modell zur Berechnung der Strömung und der Schadstoffverteilung im Bereich einzelner Gebäude. Teil II: Schadstoffausbreitung und Anwendung. Meteorol Z 6: 130–136

    Google Scholar 

  • Grunert F, Benndorf D, Klingbeil K (1984) Neuere Ergebnisse zum Aufbau von Schutzpflanzungen. Beiträge für die Forstwissenschaft 18: 108–115

    Google Scholar 

  • Huang Y, Hu X, Zeng N (2009) Impact of wedge-shaped roofs on airflow and pollutant dispersion inside urban street canyons. Build Environ 44: 2335–2347

    Article  Google Scholar 

  • Hunter LJ, Watson ID, Johnson GT (1991) Modelling air flow regimes in urban canyons. Energy Build 15: 315–324

    Article  Google Scholar 

  • Kastner-Klein P, Plate EJ (1999) Wind-tunnel study of concentration fields in street canyons. Atmos Environ 33: 3973–3979

    Article  Google Scholar 

  • Kastner-Klein P, Fedorovich E, Rotach MW (2001) A wind tunnel study of organised and turbulent air motions in urban street canyons. J Wind Eng Ind Aerodyn 89: 849–861

    Article  Google Scholar 

  • Langner M, Kull M, Endlicher WR (2011) Determination of PM10 deposition based on antimony flux to selected urban surfaces. Environ Pollut 159: 2028–2034

    Article  Google Scholar 

  • Li X, Liu C, Leung DYC, Lam KM (2006) Recent progress in CFD modelling of wind field and pollutant transport in street canyons. Atmos Environ 40: 5640–5658

    Article  Google Scholar 

  • Litschke T, Kuttler W (2008) On the reduction of urban particle concentration by vegetation–a review. Meteorol Z 17: 229–249

    Article  Google Scholar 

  • Liu C, Barth MC (2002) Large-eddy simulation of flow and scalar transport in a modeled street canyon. J Appl Meteorol 41: 660–673

    Article  Google Scholar 

  • Meroney RN (2004) Wind tunnel and numerical simulation of pollution dispersion: a hybrid approach. Working Paper. Croucher Advanced Study Institute on Wind Tunnel Modeling, Hong Kong University of Science and Technology. http://www.engr.colostate.edu/~meroney/projects/ASI. Accessed 15 Jan 2012

  • Meroney RN, Pavageau M, Rafailidis S et al (1996) Study of line source characteristics for 2-D physical modelling of pollutant dispersion in street canyons. J Wind Eng Ind Aerodyn 62: 37–56

    Article  Google Scholar 

  • Moonen P, Dorer V, Carmeliet J (2011a) Evaluation of the ventilation potential of courtyards and urban street canyons using RANS and LES. J Wind Eng Ind Aerodyn 99: 414–423

    Article  Google Scholar 

  • Moonen P, Gromke C, Dorer V, Carmeliet J (2011b) LES of dispersion in a street canyon with tree planting. In: Leitl B (ed) Physical modelling of flow and dispersion phenomena PHYSMOD2011, Hamburg Germany, pp 320–327

  • Pavageau M, Schatzmann M (1999) Wind tunnel measurements of concentration fluctuations in an urban street canyon. Atmos Environ 33: 3961–3971

    Article  Google Scholar 

  • Ries K, Eichhorn J (2001) Simulation of effects of vegetation on the dispersion of pollutants in street canyons. Meteorol Z 10: 229–233

    Article  Google Scholar 

  • Ruck B, Schmidt F (1986) Das Strömungsfeld der Einzelbaumumströmung. Forstwiss Centralblatt 105: 178–196

    Article  Google Scholar 

  • Salim SM, Cheah SC, Chan A (2011) Numerical simulation of dispersion in urban street canyons with avenue-like tree plantings: Comparison between RANS and LES. Build Environ 46: 1735–1746

    Article  Google Scholar 

  • Schatzmann M, Leitl B (2002) Validation and application of obstacle-resolving urban dispersion models. Atmos Environ 36: 4811–4821

    Article  Google Scholar 

  • Schlichting H, Gersten K (2003) Boundary layer theory. Spriner, Berlin, p 801

    Google Scholar 

  • Sini JF, Anquetin S, Mestayer PG (1996) Pollutant dispersion and thermal effects in urban street canyons. Atmos Environ 30: 2659–2677

    Article  Google Scholar 

  • Snyder WH (1972) Similarity criteria for the application of fluid models to the study of air pollution meteorology. Boundary-Layer Meteorol 3: 113–134

    Article  Google Scholar 

  • So ESP, Chan ATY, Wong AYT (2005) Large-eddy simulations of wind flow and pollutant dispersion in a street canyon. Atmos Environ 39: 3573–3582

    Article  Google Scholar 

  • Soulhac L, Perkins RJ, Salizzoni P (2008) Flow in a street canyon for any external wind direction. Boundary-Layer Meteorol 126: 365–388

    Article  Google Scholar 

  • Stull RB (1988) An introduction to boundary layer meteorology. Springer, Berlin, p 670

    Google Scholar 

  • Vardoulakis S, Fisher BEA, Pericleous K, Gonzalez-Flesca N (2003) Modelling air quality in street canyons: a review. Atmos Environ 37: 155–182

    Article  Google Scholar 

  • VDI 3783-12 (2000) Environmental meteorology: physical modelling of flow and dispersion processes in the atmospheric boundary layer—application of wind tunnels. Verein Deutscher Ingenieure (ed) Beuth Verlag, Berlin, 36 pp

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christof Gromke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gromke, C., Ruck, B. Pollutant Concentrations in Street Canyons of Different Aspect Ratio with Avenues of Trees for Various Wind Directions. Boundary-Layer Meteorol 144, 41–64 (2012). https://doi.org/10.1007/s10546-012-9703-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-012-9703-z

Keywords

Navigation