Skip to main content
Log in

An LES study of aerodynamic effect of trees on traffic pollutant dispersion in an ideal street canyon

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Aerodynamic impacts of two tree implant layout with different tree heights on air pollution distribution inside the street canyon, where the walls height and street width are equal, has been investigated using Parallelized Large Eddy simulation model (PALM). A reference tree-free case, six double-row, and center-row planted trees with 5 m, 10 m, and 15 m height cases were studied. The results of the modeling study reveal that the center-row planted trees have direct impacts on air ventilation inside the street canyon. In street canyons with center-row planted trees, taller trees worsen the air quality up to \(10\%\). In street canyons with double-row planted trees, trees higher than roof-top level improve air quality inside the street canyon by about 6%. The highest concentration values were modeled at the pedestrian level about 1.5 m to 2 m near the leeward wall. The center-row tree implant is more favorable for air quality improvement than the double-row tree implant. The trees increase air pollution around the roof level near the leeward wall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. https://palm.muk.uni-hannover.de/.

References

  1. J. Fenger, Air pollution in the last 50 years–From local to global. Atmos. Environ. 43(1), 13–22 (2009)

    Article  ADS  Google Scholar 

  2. M.J. Kleeman, J.J. Schauer, G.R. Cass, Size and composition distribution of fine particulate matter emitted from motor vehicles. Environ. Sci. Technol. 34(7), 1132–1142 (2000)

    Article  ADS  Google Scholar 

  3. H.L. Brantley, G.S. Hagler, P.J. Deshmukh, R.W. Baldauf, Field assessment of the effects of roadside vegetation on near-road black carbon and particulate matter. Sci. Total Environ. 468, 120–129 (2014)

    Article  ADS  Google Scholar 

  4. P. Irga, M. Burchett, F. Torpy, Does urban forestry have a quantitative effect on ambient air quality in an urban environment? Atmos. Environ. 120, 173–181 (2015)

    Article  ADS  Google Scholar 

  5. T.A. Pugh, A.R. MacKenzie, J.D. Whyatt, C.N. Hewitt, Effectiveness of green infrastructure for improvement of air quality in urban street canyons. Environ. Sci. Technol. 46(14), 7692–7699 (2012)

    Article  ADS  Google Scholar 

  6. M. Tallis, G. Taylor, D. Sinnett, P. Freer-Smith, Estimating the removal of atmospheric particulate pollution by the urban tree canopy of London, under current and future environments. Landsc. Urban Plan. 103(2), 129–138 (2011)

    Article  Google Scholar 

  7. S. Arghavani, H. Malakooti, A.A. Bidokhti, Evaluation the effects of urban green space scenarios on near-surface turbulence and dispersion related parameters: A numerical case study in Tehran metropolis. Urban Forest. Urban Green. 59, 127012 (2021)

    Article  Google Scholar 

  8. C. Gromke, B. Blocken, Influence of avenue-trees on air quality at the urban neighborhood scale. Part II: Traffic pollutant concentrations at pedestrian level. Environ. Pollut. 196, 176–184 (2015)

    Article  Google Scholar 

  9. C. Gromke, R. Buccolieri, S. Di Sabatino, B. Ruck, Dispersion study in a street canyon with tree planting by means of wind tunnel and numerical investigations–evaluation of CFD data with experimental data. Atmos. Environ. 42(37), 8640–8650 (2008)

    Article  ADS  Google Scholar 

  10. C. Gromke, B. Ruck, Pollutant concentrations in street canyons of different aspect ratio with avenues of trees for various wind directions. Bound.-Layer Meteorol. 144(1), 41–64 (2012)

    Article  ADS  Google Scholar 

  11. P.E. Vos, B. Maiheu, J. Vankerkom, S. Janssen, Improving local air quality in cities: to tree or not to tree? Environ. Pollut. 183, 113–122 (2013)

    Article  Google Scholar 

  12. Y. Wang, J. Zacharias, Landscape modification for ambient environmental improvement in central business districts–a case from Beijing. Urban Forest. Urban Green. 14(1), 8–18 (2015)

    Article  Google Scholar 

  13. C. Gromke, B. Ruck, Influence of trees on the dispersion of pollutants in an urban street canyon—experimental investigation of the flow and concentration field. Atmos. Environ. 41(16), 3287–3302 (2007)

    Article  ADS  Google Scholar 

  14. S. Karttunen, M. Kurppa, M. Auvinen, A. Hellsten, L. Järvi, Large-eddy simulation of the optimal street-tree layout for pedestrian-level aerosol particle concentrations–A case study from a city-boulevard. Atmos. Environ. X 6, 100073 (2020)

    Google Scholar 

  15. T.E. Morakinyo, Y.F. Lam, Study of traffic-related pollutant removal from street canyon with trees: dispersion and deposition perspective. Environ. Sci. Pollut. Res. 23(21), 21652–21668 (2016)

    Article  Google Scholar 

  16. R. Buccolieri, C. Gromke, S. Di Sabatino, B. Ruck, Aerodynamic effects of trees on pollutant concentration in street canyons. Sci. Total Environ. 407(19), 5247–5256 (2009)

    Article  ADS  Google Scholar 

  17. A. Niroobakhsh, S. Hassanzadeh, F. Hoseinibalam, Flow and pollution concentration large-Eddy simulation and transition conditions for different street canyons and wind speeds: Environmental pollution reduction approach. Urban Climate 35, 100731 (2021)

    Article  Google Scholar 

  18. S. H. Moayedi, S. Hassanzadeh, Large eddy simulation study of thermal effects on street canyon flow patterns. Eur. Phys. J. Plus (2022)

  19. B. Maronga, M. Gryschka, R. Heinze, F. Hoffmann, F. Kanani-Sühring, M. Keck, K. Ketelsen, M. Letzel, M. Sühring, S. Raasch, The Parallelized Large-Eddy Simulation Model (PALM) version 4.0 for atmospheric and oceanic flows: model formulation, recent developments, and future perspectives. Geosci. Model Develop. Discuss. 8(2), 1539–1637 (2015)

    ADS  Google Scholar 

  20. B. Maronga, M. Gryschka, R. Heinze, F. Hoffmann, F. Kanani-Sühring, M. Keck, K. Ketelsen, M.O. Letzel, M. Sühring, S. Raasch, The Parallelized large-eddy simulation model (PALM) version 4.0 for atmospheric and oceanic flows: model formulation, recent developments, and future perspectives. Geosci. Model Develop. 8(8), 2515–2551 (2015)

    Article  ADS  Google Scholar 

  21. J. Deardorff, The use of subgrid transport equations in a three-dimensional model of atmospheric turbulence. J. Fluids Eng 95(429–438), 181 (1973)

    Google Scholar 

  22. E.M. Saiki, C.-H. Moeng, P.P. Sullivan, Large-eddy simulation of the stably stratified planetary boundary layer. Bound.-Layer Meteorol. 95(1), 1–30 (2000)

    Article  ADS  Google Scholar 

  23. J. Wyngaard, L. Peltier, S. Khanna, LES in the surface layer: Surface fluxes, scaling, and SGS modeling. J. Atmos. Sci. 55(10), 1733–1754 (1998)

    Article  ADS  Google Scholar 

  24. L.J. Wicker, W.C. Skamarock, Time-splitting methods for elastic models using forward time schemes. Mon. Weather Rev. 130(8), 2088–2097 (2002)

    Article  ADS  Google Scholar 

  25. R.H. Shaw, U. Schumann, Large-eddy simulation of turbulent flow above and within a forest. Bound.-Layer Meteorol. 61(1), 47–64 (1992)

    Article  ADS  Google Scholar 

  26. T. Watanabe, Large-eddy simulation of coherent turbulence structures associated with scalar ramps over plant canopies. Bound.-Layer Meteorol. 112(2), 307–341 (2004)

    Article  ADS  Google Scholar 

  27. M. Bruse, H. Fleer, Simulating surface–plant–air interactions inside urban environments with a three dimensional numerical model. Environ. Model. Softw. 13(3–4), 373–384 (1998)

    Article  Google Scholar 

  28. A. Petrov, Evaluation of OpenFOAM against CODASC wind tunnel database and impact of heating on the flow in an idealised street canyon. Int. J. Environ. Pollut. 65(1–3), 149–163 (2019)

    Article  Google Scholar 

  29. S.M. Salim, S.C. Cheah, A. Chan, Numerical simulation of dispersion in urban street canyons with avenue-like tree plantings: comparison between RANS and LES. Build. Environ. 46(9), 1735–1746 (2011)

    Article  Google Scholar 

  30. C. Tee, E. Ng, G. Xu, Analysis of transport methodologies for pollutant dispersion modelling in urban environments. J. Environ. Chem. Eng. 8(4), 103937 (2020)

    Article  Google Scholar 

  31. S. Hanna, J. Chang, Acceptance criteria for urban dispersion model evaluation. Meteorol. Atmos. Phys. 116(3), 133–146 (2012)

    Article  ADS  Google Scholar 

  32. P. Moonen, C. Gromke, V. Dorer, Performance assessment of Large Eddy Simulation (LES) for modeling dispersion in an urban street canyon with tree planting. Atmos. Environ. 75, 66–76 (2013)

    Article  ADS  Google Scholar 

  33. S.-B. Park, J.-J. Baik, S. Raasch, M.O. Letzel, A large-eddy simulation study of thermal effects on turbulent flow and dispersion in and above a street canyon. J. Appl. Meteorol. Climatol. 51(5), 829–841 (2012)

    Article  ADS  Google Scholar 

  34. M. R. Raupach, J. J. Finnigan, Y. Brunet, Coherent eddies and turbulence in vegetation canopies: the mixing-layer analogy. Boundary-layer meteorology 25th anniversary volume, 1970–1995, Springer: 351–382 (1996).

Download references

Acknowledgements

The authors would like to acknowledge the PALM group at the Institute of meteorology and climatology of Leibniz University Hannover, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Smaeyl Hassanzadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moayedi, S.H., Hassanzadeh, S. An LES study of aerodynamic effect of trees on traffic pollutant dispersion in an ideal street canyon. Eur. Phys. J. Plus 137, 797 (2022). https://doi.org/10.1140/epjp/s13360-022-03004-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03004-y

Navigation